This paper presents the development of the data driven approach first introduced in Camillo and D’Attoma (2010) and D’Attoma (2009), which enabled one to obtain a global measure of comparability between treatment groups within a non-experimental framework. This paper points to better formalize the global measure of imbalance reported in Camillo and D’Attoma (2010) and D’Attoma (2009) and to introduce a multivariate imbalance test. We consider the global measure of imbalance and the multivariate imbalance test as tools for investigating the dependence relationship between categorical covariates and the assignment-to-treatment indicator variable within a more complex strategy whose final aim is to find balanced groups. We will show in simulated data how the strategy works in practice.
I. D'Attoma , F.Camillo (2011). A Multivariate Strategy to Measure and Test Global Imbalance in Observational Studies. EXPERT SYSTEMS WITH APPLICATIONS, 38, 3451-3460 [10.1016/j.eswa.2010.08.132].
A Multivariate Strategy to Measure and Test Global Imbalance in Observational Studies
D'ATTOMA, IDA;CAMILLO, FURIO
2011
Abstract
This paper presents the development of the data driven approach first introduced in Camillo and D’Attoma (2010) and D’Attoma (2009), which enabled one to obtain a global measure of comparability between treatment groups within a non-experimental framework. This paper points to better formalize the global measure of imbalance reported in Camillo and D’Attoma (2010) and D’Attoma (2009) and to introduce a multivariate imbalance test. We consider the global measure of imbalance and the multivariate imbalance test as tools for investigating the dependence relationship between categorical covariates and the assignment-to-treatment indicator variable within a more complex strategy whose final aim is to find balanced groups. We will show in simulated data how the strategy works in practice.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.