In this paper, a novel force sensor based on commercial discrete optoelectronic components mounted on a compliant frame is described. The compliant frame has been designed through an optimization procedure to achieve a desired relation between the applied force and the angular displacement of the optical axes of the optoelectronic components. The narrow-angle characteristics of Light Emitting Diode (LED) and PhotoDetector (PD) couples have been exploited for the generation of a signal proportional to very limited deformation of the compliant frame caused by the external traction force. This sensor is suitable for applications in the field of tendon driven robots, and in particular the use of this sensor for the measurement of the actuator side tendon force in a robotic hand is reported. The design procedure of the sensor is presented together with the sensor prototype, the experimental verification of the calibration curve and of the frame deformation and the testing in a force feedback control system. The main advantages of this sensor are the simplified conditioning electronics, the very high noise-to-signal ratio and the immunity to electromagnetic fields.

G. Palli, S. Pirozzi (2011). Force sensor based on discrete optoelectronic components and compliant frames. SENSORS AND ACTUATORS. A, PHYSICAL, 165, 239-249 [10.1016/j.sna.2010.11.007].

Force sensor based on discrete optoelectronic components and compliant frames

PALLI, GIANLUCA;
2011

Abstract

In this paper, a novel force sensor based on commercial discrete optoelectronic components mounted on a compliant frame is described. The compliant frame has been designed through an optimization procedure to achieve a desired relation between the applied force and the angular displacement of the optical axes of the optoelectronic components. The narrow-angle characteristics of Light Emitting Diode (LED) and PhotoDetector (PD) couples have been exploited for the generation of a signal proportional to very limited deformation of the compliant frame caused by the external traction force. This sensor is suitable for applications in the field of tendon driven robots, and in particular the use of this sensor for the measurement of the actuator side tendon force in a robotic hand is reported. The design procedure of the sensor is presented together with the sensor prototype, the experimental verification of the calibration curve and of the frame deformation and the testing in a force feedback control system. The main advantages of this sensor are the simplified conditioning electronics, the very high noise-to-signal ratio and the immunity to electromagnetic fields.
2011
G. Palli, S. Pirozzi (2011). Force sensor based on discrete optoelectronic components and compliant frames. SENSORS AND ACTUATORS. A, PHYSICAL, 165, 239-249 [10.1016/j.sna.2010.11.007].
G. Palli; S. Pirozzi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/103946
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 37
social impact