As the development of Dirac-Source Field-Effect Transistors (DS-FETs) progresses, there is an increasing need for a robust, flexible, and agile simulation framework capable of evaluating device performance across a range of operating conditions. This work addresses that need by coupling a two-dimensional (2D) Poisson solver with a quantum transport model under the ballistic transport regime. This simulation approach is employed to analyze the electrical characteristics of a DS-FET realized with the heterojunction of graphene and monolayer MoS2. In addition, the impact of gate-to-channel alignment on device performance is systematically investigated. Simulation results underscore the critical role of full gate overlap with the semiconducting region and substantiate the feasibility of DS-FETs based on these two materials.

Ugolini, T., Gnani, E. (2025). Design guidelines for Gr-MoS2 based DS-FETs. SOLID-STATE ELECTRONICS, 230, 1-4 [10.1016/j.sse.2025.109216].

Design guidelines for Gr-MoS2 based DS-FETs

Ugolini T.
;
Gnani E.
2025

Abstract

As the development of Dirac-Source Field-Effect Transistors (DS-FETs) progresses, there is an increasing need for a robust, flexible, and agile simulation framework capable of evaluating device performance across a range of operating conditions. This work addresses that need by coupling a two-dimensional (2D) Poisson solver with a quantum transport model under the ballistic transport regime. This simulation approach is employed to analyze the electrical characteristics of a DS-FET realized with the heterojunction of graphene and monolayer MoS2. In addition, the impact of gate-to-channel alignment on device performance is systematically investigated. Simulation results underscore the critical role of full gate overlap with the semiconducting region and substantiate the feasibility of DS-FETs based on these two materials.
2025
Ugolini, T., Gnani, E. (2025). Design guidelines for Gr-MoS2 based DS-FETs. SOLID-STATE ELECTRONICS, 230, 1-4 [10.1016/j.sse.2025.109216].
Ugolini, T.; Gnani, E.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0038110125001613-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1032315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact