We analyse the local structure of the K-moduli space of Fano varieties at a toric singular K-polystable Fano 3-fold, which deforms to smooth Fano 3-folds with anticanonical volume 28 and Picard rank 4. In particular, by constructing an algebraic deformation of this toric singular Fano, we show that the irreducible component of K-moduli parametrising these smooth Fano 3-folds is a rational surface.
Heuberger, L., Petracci, A. (2025). On K-moduli of Fano threefolds with degree 28 and Picard rank 4. ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE., 34(4), 1159-1184 [10.5802/afst.1829].
On K-moduli of Fano threefolds with degree 28 and Picard rank 4
Petracci, Andrea
2025
Abstract
We analyse the local structure of the K-moduli space of Fano varieties at a toric singular K-polystable Fano 3-fold, which deforms to smooth Fano 3-folds with anticanonical volume 28 and Picard rank 4. In particular, by constructing an algebraic deformation of this toric singular Fano, we show that the irreducible component of K-moduli parametrising these smooth Fano 3-folds is a rational surface.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Heuberger_Petracci_Tolosa.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


