Diamond is a promising platform for quantum information processing as it can host highly coherent qubits that could allow for the construction of large quantum registers. A prerequisite for such devices is a coherent interaction between nitrogen-vacancy (NV) electron spins enabling scalable entanglement. Entanglement between dipolar-coupled NV spin pairs has been demonstrated but with a limited fidelity, and its error sources have not been characterized. Here, we design and implement a robust two-qubit gate between NV electron spins in diamond and quantify the influence of multiple error sources on the gate performance. Experimentally, we demonstrate a record gate fidelity of F2q=(96.0±2.5)% under ambient conditions. Our identification of the dominant errors paves the way towards NV-NV gates beyond the error correction threshold.

Joas, T., Ferlemann, F., Sailer, R., Vetter, P.J., Zhang, J., Said, R.S., et al. (2025). High-Fidelity Electron Spin Gates for Scaling Diamond Quantum Registers. PHYSICAL REVIEW. X, 15(2), 1-29 [10.1103/PhysRevX.15.021069].

High-Fidelity Electron Spin Gates for Scaling Diamond Quantum Registers

Calarco T.;
2025

Abstract

Diamond is a promising platform for quantum information processing as it can host highly coherent qubits that could allow for the construction of large quantum registers. A prerequisite for such devices is a coherent interaction between nitrogen-vacancy (NV) electron spins enabling scalable entanglement. Entanglement between dipolar-coupled NV spin pairs has been demonstrated but with a limited fidelity, and its error sources have not been characterized. Here, we design and implement a robust two-qubit gate between NV electron spins in diamond and quantify the influence of multiple error sources on the gate performance. Experimentally, we demonstrate a record gate fidelity of F2q=(96.0±2.5)% under ambient conditions. Our identification of the dominant errors paves the way towards NV-NV gates beyond the error correction threshold.
2025
Joas, T., Ferlemann, F., Sailer, R., Vetter, P.J., Zhang, J., Said, R.S., et al. (2025). High-Fidelity Electron Spin Gates for Scaling Diamond Quantum Registers. PHYSICAL REVIEW. X, 15(2), 1-29 [10.1103/PhysRevX.15.021069].
Joas, T.; Ferlemann, F.; Sailer, R.; Vetter, P. J.; Zhang, J.; Said, R. S.; Teraji, T.; Onoda, S.; Calarco, T.; Genov, G.; Muller, M. M.; Jelezko, F....espandi
File in questo prodotto:
File Dimensione Formato  
PhysRevX.15.021069.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 8.85 MB
Formato Adobe PDF
8.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1026298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact