Let Γ be a discrete countable group acting isometrically on a measurable field X of CAT(0)-spaces of finite telescopic dimension over some ergodic standard Borel probability Γ-space (Ω, μ). If X does not admit any invariant Euclidean subfield, we prove that the measurable field X(Equation presented) extended to a Γ-boundary admits an invariant section. In the case of constant fields, this shows the existence of Furstenberg maps for measurable cocycles, extending results by Bader, Duchesne and Lécureux. When Γ < PU(n, 1) is a torsion-free lattice and the CAT(0)-space is X(p, ∞), we show that a maximal cocycle σ: Γ × Ω → PU(p, ∞) with a suitable boundary map is finitely reducible. As a consequence, we prove an infinite-dimensional rigidity phenomenon for maximal cocycles in PU(1, ∞).

Sarti, F., Savini, A. (2025). Boundary maps and reducibility for cocycles into the isometries of CAT(0)-spaces. GROUPS, GEOMETRY, AND DYNAMICS, 19(3), 1013-1040 [10.4171/ggd/909].

Boundary maps and reducibility for cocycles into the isometries of CAT(0)-spaces

Sarti, Filippo
;
Savini, Alessio
2025

Abstract

Let Γ be a discrete countable group acting isometrically on a measurable field X of CAT(0)-spaces of finite telescopic dimension over some ergodic standard Borel probability Γ-space (Ω, μ). If X does not admit any invariant Euclidean subfield, we prove that the measurable field X(Equation presented) extended to a Γ-boundary admits an invariant section. In the case of constant fields, this shows the existence of Furstenberg maps for measurable cocycles, extending results by Bader, Duchesne and Lécureux. When Γ < PU(n, 1) is a torsion-free lattice and the CAT(0)-space is X(p, ∞), we show that a maximal cocycle σ: Γ × Ω → PU(p, ∞) with a suitable boundary map is finitely reducible. As a consequence, we prove an infinite-dimensional rigidity phenomenon for maximal cocycles in PU(1, ∞).
2025
Sarti, F., Savini, A. (2025). Boundary maps and reducibility for cocycles into the isometries of CAT(0)-spaces. GROUPS, GEOMETRY, AND DYNAMICS, 19(3), 1013-1040 [10.4171/ggd/909].
Sarti, Filippo; Savini, Alessio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1023795
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact