A database of temperature-dependent hexagonal ice aggregate optical properties in the far-infrared (FIR) spectrum is developed to support FIR missions, particularly the current Polar Radiant Energy in the Far InfraRed Experiment and the upcoming Far-infrared-Outgoing-Radiation Understanding and Monitoring. Based on this data set, simulations of the brightness temperatures (BTs) in the 100-667 cm-1 FIR region are conducted for an anvil-like ice cloud in a tropical atmosphere. The results show nonnegligible impact of ice cloud temperature on simulated BTs, which can be as large as 3 K due to the difference between fixed 160 or 270 K cloud temperature and the benchmark counterpart, varying in accordance with the ambient temperature profile for a cloud residing between 249.6 and 199.6 K. To enhance the accuracy of FIR radiative transfer modeling, it is recommended to incorporate temperature-dependent optical properties of ice clouds.
Ren, T., Yang, P., Brindley, H.e., L'Ecuyer, T.s., Maestri, T. (2025). Temperature-Dependent Optical Properties of Ice Crystals in the Far-Infrared Regime. GEOPHYSICAL RESEARCH LETTERS, 52(12), 1-11 [10.1029/2025GL116735].
Temperature-Dependent Optical Properties of Ice Crystals in the Far-Infrared Regime
Maestri, TUltimo
2025
Abstract
A database of temperature-dependent hexagonal ice aggregate optical properties in the far-infrared (FIR) spectrum is developed to support FIR missions, particularly the current Polar Radiant Energy in the Far InfraRed Experiment and the upcoming Far-infrared-Outgoing-Radiation Understanding and Monitoring. Based on this data set, simulations of the brightness temperatures (BTs) in the 100-667 cm-1 FIR region are conducted for an anvil-like ice cloud in a tropical atmosphere. The results show nonnegligible impact of ice cloud temperature on simulated BTs, which can be as large as 3 K due to the difference between fixed 160 or 270 K cloud temperature and the benchmark counterpart, varying in accordance with the ambient temperature profile for a cloud residing between 249.6 and 199.6 K. To enhance the accuracy of FIR radiative transfer modeling, it is recommended to incorporate temperature-dependent optical properties of ice clouds.| File | Dimensione | Formato | |
|---|---|---|---|
|
A34_GRL_2025_Reng.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
625.12 kB
Formato
Adobe PDF
|
625.12 kB | Adobe PDF | Visualizza/Apri |
|
2025gl116735-sup-0001-supporting information si-s01.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
2.09 MB
Formato
Adobe PDF
|
2.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


