This article presents a creative and practical process for dealing with the problem of selection bias. Taking an algorithmic approach and capitalizing on the known treatment-associated variance in the X matrix, we propose a data transformation that allows estimating unbiased treatment effects. The approach does not call for modelling the data, based on underlying theories or assumptions about the selection process, but instead calls for using the existing variability within the data and letting the data speak. We illustrate with an application of the method to Italian Job Centres.

Peck, L., Camillo, F., D'Attoma, I. (2010). A Promising New Approach to Eliminating Selection Bias. THE CANADIAN JOURNAL OF PROGRAM EVALUATION, 24(2), 31-56.

A Promising New Approach to Eliminating Selection Bias

CAMILLO, FURIO;D'ATTOMA, IDA
2010

Abstract

This article presents a creative and practical process for dealing with the problem of selection bias. Taking an algorithmic approach and capitalizing on the known treatment-associated variance in the X matrix, we propose a data transformation that allows estimating unbiased treatment effects. The approach does not call for modelling the data, based on underlying theories or assumptions about the selection process, but instead calls for using the existing variability within the data and letting the data speak. We illustrate with an application of the method to Italian Job Centres.
2010
Peck, L., Camillo, F., D'Attoma, I. (2010). A Promising New Approach to Eliminating Selection Bias. THE CANADIAN JOURNAL OF PROGRAM EVALUATION, 24(2), 31-56.
Peck, L.R.; Camillo, F.; D'Attoma, I.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/101786
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact