The cost functions considered are c(x,y)=h(x−y), with h∈C2Rn, homogeneous of degree p≥2, with positive definite Hessian in the unit sphere. We consider monotone maps T with respect to that cost and establish local scale invariant L∞-estimates of T minus affine functions, which are applied to obtain differentiability properties of T a.e. It is also shown that these maps are related to maps of bounded deformation, and further differentiability and Hölder continuity properties are derived.

Gutierrez, C.E., Montanari, A. (2025). Differentiability of monotone maps related to non quadratic costs. NONLINEAR ANALYSIS, 257, 1-16 [10.1016/j.na.2025.113804].

Differentiability of monotone maps related to non quadratic costs

Montanari A.
2025

Abstract

The cost functions considered are c(x,y)=h(x−y), with h∈C2Rn, homogeneous of degree p≥2, with positive definite Hessian in the unit sphere. We consider monotone maps T with respect to that cost and establish local scale invariant L∞-estimates of T minus affine functions, which are applied to obtain differentiability properties of T a.e. It is also shown that these maps are related to maps of bounded deformation, and further differentiability and Hölder continuity properties are derived.
2025
Gutierrez, C.E., Montanari, A. (2025). Differentiability of monotone maps related to non quadratic costs. NONLINEAR ANALYSIS, 257, 1-16 [10.1016/j.na.2025.113804].
Gutierrez, C. E.; Montanari, A.
File in questo prodotto:
File Dimensione Formato  
Linfty-bounded-deformation-FINAL VERSION-March 6 2025.pdf

embargo fino al 04/04/2026

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 209.94 kB
Formato Adobe PDF
209.94 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1016000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact