The cost functions considered are c(x,y)=h(x−y), with h∈C2Rn, homogeneous of degree p≥2, with positive definite Hessian in the unit sphere. We consider monotone maps T with respect to that cost and establish local scale invariant L∞-estimates of T minus affine functions, which are applied to obtain differentiability properties of T a.e. It is also shown that these maps are related to maps of bounded deformation, and further differentiability and Hölder continuity properties are derived.
Gutierrez, C.E., Montanari, A. (2025). Differentiability of monotone maps related to non quadratic costs. NONLINEAR ANALYSIS, 257, 1-16 [10.1016/j.na.2025.113804].
Differentiability of monotone maps related to non quadratic costs
Montanari A.
2025
Abstract
The cost functions considered are c(x,y)=h(x−y), with h∈C2Rn, homogeneous of degree p≥2, with positive definite Hessian in the unit sphere. We consider monotone maps T with respect to that cost and establish local scale invariant L∞-estimates of T minus affine functions, which are applied to obtain differentiability properties of T a.e. It is also shown that these maps are related to maps of bounded deformation, and further differentiability and Hölder continuity properties are derived.File | Dimensione | Formato | |
---|---|---|---|
Linfty-bounded-deformation-FINAL VERSION-March 6 2025.pdf
embargo fino al 04/04/2026
Tipo:
Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
209.94 kB
Formato
Adobe PDF
|
209.94 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.