Background: Spinocerebellar ataxia type 2 (SCA2) is a rare, inherited neurodegenerative disease characterized by progressive deterioration in both motor coordination and cognitive function. Atrophy of the cerebellum, brainstem, and spinal cord are core features of SCA2; however, the evolution and pattern of whole-brain atrophy in SCA2 remain unclear. Objective: We undertook a multisite, structural magnetic resonance imaging (MRI) study to comprehensively characterize the neurodegeneration profile of SCA2. Methods: Voxel-based morphometry analyses of 110 participants with SCA2 and 128 controls were undertaken to assess groupwise differences in whole-brain volume. Correlations with clinical severity and genotype, and cross-sectional profiling of atrophy patterns at different disease stages, were also performed. Results: Atrophy in SCA2 versus controls was greatest (Cohen's d >2.5) in the cerebellar white matter (WM), middle cerebellar peduncle, pons, and corticospinal tract. Very large effects (d >1.5) were also evident in the superior cerebellar, inferior cerebellar, and cerebral peduncles. In the cerebellar gray matter (GM), large effects (d >0.8) were observed in areas related to both motor coordination and cognitive tasks. Strong correlations (|r| > 0.4) between volume and disease severity largely mirrored these groupwise outcomes. Stratification by disease severity exhibited a degeneration pattern beginning in the cerebellar and pontine WM in preclinical subjects; spreading to the cerebellar GM and cerebro-cerebellar/corticospinal WM tracts; and then finally involving the thalamus, striatum, and cortex in severe stages. Conclusion: The magnitude and pattern of brain atrophy evolve over the course of SCA2, with widespread, nonuniform involvement across the brainstem, cerebellar tracts, and cerebellar cortex; and late involvement of the cerebral cortex and striatum. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Robertson, J.W., Adanyeguh, I., Bender, B., Boesch, S., Brunetti, A., Cocozza, S., et al. (2025). The Pattern and Stages of Atrophy in Spinocerebellar Ataxia Type 2: Volumetrics from ENIGMA-Ataxia. MOVEMENT DISORDERS, 40(4), 1-11 [10.1002/mds.30143].
The Pattern and Stages of Atrophy in Spinocerebellar Ataxia Type 2: Volumetrics from ENIGMA-Ataxia
Diciotti S.;
2025
Abstract
Background: Spinocerebellar ataxia type 2 (SCA2) is a rare, inherited neurodegenerative disease characterized by progressive deterioration in both motor coordination and cognitive function. Atrophy of the cerebellum, brainstem, and spinal cord are core features of SCA2; however, the evolution and pattern of whole-brain atrophy in SCA2 remain unclear. Objective: We undertook a multisite, structural magnetic resonance imaging (MRI) study to comprehensively characterize the neurodegeneration profile of SCA2. Methods: Voxel-based morphometry analyses of 110 participants with SCA2 and 128 controls were undertaken to assess groupwise differences in whole-brain volume. Correlations with clinical severity and genotype, and cross-sectional profiling of atrophy patterns at different disease stages, were also performed. Results: Atrophy in SCA2 versus controls was greatest (Cohen's d >2.5) in the cerebellar white matter (WM), middle cerebellar peduncle, pons, and corticospinal tract. Very large effects (d >1.5) were also evident in the superior cerebellar, inferior cerebellar, and cerebral peduncles. In the cerebellar gray matter (GM), large effects (d >0.8) were observed in areas related to both motor coordination and cognitive tasks. Strong correlations (|r| > 0.4) between volume and disease severity largely mirrored these groupwise outcomes. Stratification by disease severity exhibited a degeneration pattern beginning in the cerebellar and pontine WM in preclinical subjects; spreading to the cerebellar GM and cerebro-cerebellar/corticospinal WM tracts; and then finally involving the thalamus, striatum, and cortex in severe stages. Conclusion: The magnitude and pattern of brain atrophy evolve over the course of SCA2, with widespread, nonuniform involvement across the brainstem, cerebellar tracts, and cerebellar cortex; and late involvement of the cerebral cortex and striatum. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.File | Dimensione | Formato | |
---|---|---|---|
robertson25.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
3.91 MB
Formato
Adobe PDF
|
3.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.