Deep learning (DL) applications in the medical field often face challenges related to limited data availability, resulting in issues like overfitting and imbalanced datasets. Synthetic data offers a promising solution to these problems by enabling data augmentation and enhancing the performance of DL models. In this study, we trained the state-of-the-art generative model StyleGAN2-ADA on 1412 images from the Alzheimer's disease neuroimaging initiative (ADNI) dataset to generate synthetic slices of T1-weighted brain MRI of healthy subjects. The quality of the synthetic images has been evaluated through quantitative and qualitative assessments, including a visual Turing test conducted by an expert observer with 2000 images. The observer achieved an accuracy of 52.95%, indicative of a performance level comparable to random guessing. These results demonstrate the capability of StyleGAN2-ADA to generate anatomically relevant synthetic brain MRI data.

Lai, M., Marzi, C., Mascalchi, M., Diciotti, S. (2024). Brain MRI Synthesis Using Stylegan2-ADA. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE Computer Society [10.1109/ISBI56570.2024.10635279].

Brain MRI Synthesis Using Stylegan2-ADA

Lai M.
Primo
;
Diciotti S.
Ultimo
2024

Abstract

Deep learning (DL) applications in the medical field often face challenges related to limited data availability, resulting in issues like overfitting and imbalanced datasets. Synthetic data offers a promising solution to these problems by enabling data augmentation and enhancing the performance of DL models. In this study, we trained the state-of-the-art generative model StyleGAN2-ADA on 1412 images from the Alzheimer's disease neuroimaging initiative (ADNI) dataset to generate synthetic slices of T1-weighted brain MRI of healthy subjects. The quality of the synthetic images has been evaluated through quantitative and qualitative assessments, including a visual Turing test conducted by an expert observer with 2000 images. The observer achieved an accuracy of 52.95%, indicative of a performance level comparable to random guessing. These results demonstrate the capability of StyleGAN2-ADA to generate anatomically relevant synthetic brain MRI data.
2024
Proceedings - International Symposium on Biomedical Imaging
1
5
Lai, M., Marzi, C., Mascalchi, M., Diciotti, S. (2024). Brain MRI Synthesis Using Stylegan2-ADA. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE Computer Society [10.1109/ISBI56570.2024.10635279].
Lai, M.; Marzi, C.; Mascalchi, M.; Diciotti, S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1013356
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact