Granular materials like sand have gained importance in thermal storage applications due to their stability and cost-effectiveness. However, excessive usage of sand can pose environmental issues. This study investigates recycled construction materials such as glass, asphalt, ceramic, and concrete as alternatives to natural sand for low-temperature TES applications. The materials were processed to similar grain sizes and evaluated for their chemical, thermophysical, and thermal storage properties through a six-hour charging cycle at 60 degrees C. XRF analysis revealed significant compositions, including high oxygen and silicon content in concrete and sand, respectively. Results indicate that sand with 0.189 W/m K recorded the highest thermal conductivity compared with concrete 0.172 W/m K, glass 0.131 W/m K, ceramic 0.159 W/m K and asphalt 0.159 W/m K. A higher specific heat capacity was observed in concrete at 755 J/kg K, followed by asphalt at 732 J/kg K, glass at 708 J/kg K, and sand at 688 J/kg K. However, ceramic is categorized for a lower specific heat capacity of 682 J/kg K. Absolute density evaluation indicates that sand is the densest material with 2662 kg/m3, contrary to concrete 2480 kg/m3, glass 2421 kg/m3, ceramic 2285 kg/m3, and asphalt 2436 kg/m3. More to the point, the Ragone plot for specific power and energy highlighted that ceramic has a rapid energy release and concrete demonstrated sustained energy storage capabilities. Volumetric power and energy density assessments indicated sand's outstanding performance. However, concrete registered a superior thermal storage among recycled materials. The results highlight that recycled materials, specifically concrete can be used for thermal storage applications like water heating in poor communities.

Jafari, F., Semprini, G., Bonoli, A. (2025). Evaluating thermal storage capability of recycled construction materials: an experimental approach. MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 14(1), 1-13 [10.1007/s40243-025-00299-6].

Evaluating thermal storage capability of recycled construction materials: an experimental approach

Jafari F.
Writing – Original Draft Preparation
;
Semprini G.
Supervision
;
Bonoli A.
Supervision
2025

Abstract

Granular materials like sand have gained importance in thermal storage applications due to their stability and cost-effectiveness. However, excessive usage of sand can pose environmental issues. This study investigates recycled construction materials such as glass, asphalt, ceramic, and concrete as alternatives to natural sand for low-temperature TES applications. The materials were processed to similar grain sizes and evaluated for their chemical, thermophysical, and thermal storage properties through a six-hour charging cycle at 60 degrees C. XRF analysis revealed significant compositions, including high oxygen and silicon content in concrete and sand, respectively. Results indicate that sand with 0.189 W/m K recorded the highest thermal conductivity compared with concrete 0.172 W/m K, glass 0.131 W/m K, ceramic 0.159 W/m K and asphalt 0.159 W/m K. A higher specific heat capacity was observed in concrete at 755 J/kg K, followed by asphalt at 732 J/kg K, glass at 708 J/kg K, and sand at 688 J/kg K. However, ceramic is categorized for a lower specific heat capacity of 682 J/kg K. Absolute density evaluation indicates that sand is the densest material with 2662 kg/m3, contrary to concrete 2480 kg/m3, glass 2421 kg/m3, ceramic 2285 kg/m3, and asphalt 2436 kg/m3. More to the point, the Ragone plot for specific power and energy highlighted that ceramic has a rapid energy release and concrete demonstrated sustained energy storage capabilities. Volumetric power and energy density assessments indicated sand's outstanding performance. However, concrete registered a superior thermal storage among recycled materials. The results highlight that recycled materials, specifically concrete can be used for thermal storage applications like water heating in poor communities.
2025
Jafari, F., Semprini, G., Bonoli, A. (2025). Evaluating thermal storage capability of recycled construction materials: an experimental approach. MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 14(1), 1-13 [10.1007/s40243-025-00299-6].
Jafari, F.; Semprini, G.; Bonoli, A.
File in questo prodotto:
File Dimensione Formato  
Springer_Evaluating thermal storage capability of recycled construction.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Creative commons
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1013015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact