Methods for 3D reconstruction from posed frames require prior knowledge about the scene metric range, usually to recover matching cues along the epipolar lines and narrow the search range. However, such prior might not be directly available or estimated inaccurately in real scenarios – e.g., outdoor 3D reconstruction from video sequences – therefore heavily hampering performance. In this paper, we focus on multi-view depth estimation without requiring prior knowledge about the metric range of the scene by proposing RAMDepth, an efficient and purely 2D framework that reverses the depth estimation and matching steps order. Moreover, we demonstrate the capability of our framework to provide rich insights about the quality of the views used for prediction. Additional material can be found on our project page.

Conti, A., Poggi, M., Cambareri, V., Mattoccia, S. (2024). Range-Agnostic Multi-View Depth Estimation with Keyframe Selection. IEEE [10.1109/3dv62453.2024.00123].

Range-Agnostic Multi-View Depth Estimation with Keyframe Selection

Conti, Andrea;Poggi, Matteo;Mattoccia, Stefano
2024

Abstract

Methods for 3D reconstruction from posed frames require prior knowledge about the scene metric range, usually to recover matching cues along the epipolar lines and narrow the search range. However, such prior might not be directly available or estimated inaccurately in real scenarios – e.g., outdoor 3D reconstruction from video sequences – therefore heavily hampering performance. In this paper, we focus on multi-view depth estimation without requiring prior knowledge about the metric range of the scene by proposing RAMDepth, an efficient and purely 2D framework that reverses the depth estimation and matching steps order. Moreover, we demonstrate the capability of our framework to provide rich insights about the quality of the views used for prediction. Additional material can be found on our project page.
2024
2024 International Conference on 3D Vision (3DV)
1350
1359
Conti, A., Poggi, M., Cambareri, V., Mattoccia, S. (2024). Range-Agnostic Multi-View Depth Estimation with Keyframe Selection. IEEE [10.1109/3dv62453.2024.00123].
Conti, Andrea; Poggi, Matteo; Cambareri, Valerio; Mattoccia, Stefano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1010357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact