This research developed a predictive model using NeuralProphet to estimate energy consumption in the ventilation system of a dairy cattle farm. The necessity for energy management in livestock farming has increased due to the growing energy demands associated with climate control systems. Approximately two years of historical energy consumption data, collected through a smart monitoring system deployed on the farm, were utilized as the primary input for the NeuralProphet model to predict long-term trends and seasonal variations. The computational results demonstrated satisfactory performance, achieving a coefficient of determination (R2) of 0.85 and a mean absolute error (MAE) of 27.47 kWh. The model effectively captured general trends and seasonal patterns, providing valuable insights into energy usage under existing operational conditions. However, short-term fluctuations were less accurately predicted due to the exclusion of exogenous climatic variables, such as temperature and humidity. The proposed model demonstrated superiority over traditional approaches in its capacity to forecast long-term energy demand, providing critical support for energy management and strategic decision-making in dairy farm operations.
Perez Garcia, C.A., Tassinari, P., Torreggiani, D., Bovo, M. (2025). Predictive modeling of energy consumption for cooling ventilation in livestock buildings: A machine learning approach. ENERGIES, 18(3), 1-16 [10.3390/en18030633].
Predictive modeling of energy consumption for cooling ventilation in livestock buildings: A machine learning approach
Perez Garcia, Carlos Alejandro;Tassinari, Patrizia;Torreggiani, Daniele;Bovo, Marco
2025
Abstract
This research developed a predictive model using NeuralProphet to estimate energy consumption in the ventilation system of a dairy cattle farm. The necessity for energy management in livestock farming has increased due to the growing energy demands associated with climate control systems. Approximately two years of historical energy consumption data, collected through a smart monitoring system deployed on the farm, were utilized as the primary input for the NeuralProphet model to predict long-term trends and seasonal variations. The computational results demonstrated satisfactory performance, achieving a coefficient of determination (R2) of 0.85 and a mean absolute error (MAE) of 27.47 kWh. The model effectively captured general trends and seasonal patterns, providing valuable insights into energy usage under existing operational conditions. However, short-term fluctuations were less accurately predicted due to the exclusion of exogenous climatic variables, such as temperature and humidity. The proposed model demonstrated superiority over traditional approaches in its capacity to forecast long-term energy demand, providing critical support for energy management and strategic decision-making in dairy farm operations.File | Dimensione | Formato | |
---|---|---|---|
energies-18-00633.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.95 MB
Formato
Adobe PDF
|
3.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.