Let (W,S) be a Coxeter system of affine type De, and let TL(W) the corresponding generalized Temperley-Lieb algebra. In this extended abstract we define an infinite dimensional associative algebra made of decorated diagrams which is isomorphic to TL(W). Moreover, we describe an explicit basis for such an algebra of diagrams which is in bijective correspondence with the classical monomial basis of TL(W), indexed by the fully commutative elements of W.
Biagioli, R., Fatabbi, G., Sasso, E. (2024). Diagram Calculus for the Affine Temperley--Lieb Algebra of Type $D$. OPEN PUBL ASSOC, SYDNEY, 00000, AUSTRALIA : Open Publishing Association [10.4204/EPTCS.403.14].
Diagram Calculus for the Affine Temperley--Lieb Algebra of Type $D$
Riccardo Biagioli
;Elisa Sasso
2024
Abstract
Let (W,S) be a Coxeter system of affine type De, and let TL(W) the corresponding generalized Temperley-Lieb algebra. In this extended abstract we define an infinite dimensional associative algebra made of decorated diagrams which is isomorphic to TL(W). Moreover, we describe an explicit basis for such an algebra of diagrams which is in bijective correspondence with the classical monomial basis of TL(W), indexed by the fully commutative elements of W.File | Dimensione | Formato | |
---|---|---|---|
paper.cgi.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
498.18 kB
Formato
Adobe PDF
|
498.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.