Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides. Glyphosate accounted for one-third of herbicide sales in Europe in 2017 and continues to raise health concerns, including its potential carcinogenicity. While the European Commission extended glyphosate’s authorisation for another 10 years in 2023, concerns remain about its impact on biodiversity and human health. This study aimed to monitor the presence of glyphosate, glufosinate, and their metabolites in 100 samples of multifloral honey representing Italian production by analysis using IC-HRMS. Results indicated that 12% of honey samples contained glyphosate residues ranging from > LOQ to 45 ng g−1, with the highest concentrations detected in the Puglia region. No sample exceeded the maximum residue levels set by EU regulations. Glufosinate and its metabolites were not detected in any samples. These findings underscore the need for continued monitoring of pesticide residues in honey, particularly given the potential ‘cocktail effect’ of multiple contaminants and their combined toxicity. This study highlights the importance of safeguarding consumer health, especially in vulnerable populations, by addressing gaps in data on pesticide residue levels.
Rampazzo, G., Nobile, M., Carpino, S., Chiesa, L., Ghidini, S., Gazzotti, T., et al. (2025). Detection of glyphosate, glufosinate, and their metabolites in multi-floral honey for food safety. FOOD ADDITIVES & CONTAMINANTS. PART A. CHEMISTRY, ANALYSIS, CONTROL, EXPOSURE & RISK ASSESSMENT, 42(2), 213-222 [10.1080/19440049.2024.2441752].
Detection of glyphosate, glufosinate, and their metabolites in multi-floral honey for food safety
Rampazzo, GiuliaPrimo
;Gazzotti, Teresa;
2025
Abstract
Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides. Glyphosate accounted for one-third of herbicide sales in Europe in 2017 and continues to raise health concerns, including its potential carcinogenicity. While the European Commission extended glyphosate’s authorisation for another 10 years in 2023, concerns remain about its impact on biodiversity and human health. This study aimed to monitor the presence of glyphosate, glufosinate, and their metabolites in 100 samples of multifloral honey representing Italian production by analysis using IC-HRMS. Results indicated that 12% of honey samples contained glyphosate residues ranging from > LOQ to 45 ng g−1, with the highest concentrations detected in the Puglia region. No sample exceeded the maximum residue levels set by EU regulations. Glufosinate and its metabolites were not detected in any samples. These findings underscore the need for continued monitoring of pesticide residues in honey, particularly given the potential ‘cocktail effect’ of multiple contaminants and their combined toxicity. This study highlights the importance of safeguarding consumer health, especially in vulnerable populations, by addressing gaps in data on pesticide residue levels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.