To maintain core body temperature in mammals, CNS thermoregulatory networks respond to cold exposure by increasing brown adipose tissue and shivering thermogenesis. However, in hibernation or torpor, this canonical thermoregulatory response is replaced by a new, emerging paradigm, thermoregulatory inversion (TI), an alternative homeostatic state in which cold exposure inhibits thermogenesis and warm exposure stimulates thermogenesis. Here, we demonstrate that in the non-torpid rat, either exclusion of the canonical thermoregulatory integrator in the preoptic hypothalamus or inhibition of neurons in the ventromedial periventricular area (VMPeA) induces the TI state through an alternative thermoregulatory pathway. Within this pathway, we have identified a dynorphinergic input to the dorsomedial hypothalamus from the dorsolateral parabrachial nucleus that plays a critical role in mediating the cold-evoked inhibition of thermogenesis during TI. Our results reveal a novel thermosensory reflex circuit within the mammalian CNS thermoregulatory pathways and support the potential for pharmacologically inducing the TI state to elicit therapeutic hypothermia in non-hibernating species, including humans.

Morrison, S.F., Cano, G., Hernan, S.L., Chiavetta, P., Tupone, D. (2025). Inhibition of the hypothalamic ventromedial periventricular area activates a dynorphin pathway-dependent thermoregulatory inversion in rats. CURRENT BIOLOGY, 35(1), 58-76 [10.1016/j.cub.2024.11.006].

Inhibition of the hypothalamic ventromedial periventricular area activates a dynorphin pathway-dependent thermoregulatory inversion in rats

Tupone, Domenico
Ultimo
2025

Abstract

To maintain core body temperature in mammals, CNS thermoregulatory networks respond to cold exposure by increasing brown adipose tissue and shivering thermogenesis. However, in hibernation or torpor, this canonical thermoregulatory response is replaced by a new, emerging paradigm, thermoregulatory inversion (TI), an alternative homeostatic state in which cold exposure inhibits thermogenesis and warm exposure stimulates thermogenesis. Here, we demonstrate that in the non-torpid rat, either exclusion of the canonical thermoregulatory integrator in the preoptic hypothalamus or inhibition of neurons in the ventromedial periventricular area (VMPeA) induces the TI state through an alternative thermoregulatory pathway. Within this pathway, we have identified a dynorphinergic input to the dorsomedial hypothalamus from the dorsolateral parabrachial nucleus that plays a critical role in mediating the cold-evoked inhibition of thermogenesis during TI. Our results reveal a novel thermosensory reflex circuit within the mammalian CNS thermoregulatory pathways and support the potential for pharmacologically inducing the TI state to elicit therapeutic hypothermia in non-hibernating species, including humans.
2025
Morrison, S.F., Cano, G., Hernan, S.L., Chiavetta, P., Tupone, D. (2025). Inhibition of the hypothalamic ventromedial periventricular area activates a dynorphin pathway-dependent thermoregulatory inversion in rats. CURRENT BIOLOGY, 35(1), 58-76 [10.1016/j.cub.2024.11.006].
Morrison, Shaun F; Cano, Georgina; Hernan, Shelby L; Chiavetta, Pierfrancesco; Tupone, Domenico
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1001009
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact