Non-convex quadratic programming with box constraints is a fundamental problem in the global optimisation literature, being one of the simplest NP-hard nonlinear programs. We present a new heuristic for this problem, which enables one to obtain solutions of excellent quality in reasonable computing times. The heuristic consists of four phases: binarisation, convexification, branch-and-bound, and local optimisation. Some very encouraging computational results are given.

Galli, L., Letchford, A.N. (2018). A binarisation heuristic for non-convex quadratic programming with box constraints. OPERATIONS RESEARCH LETTERS, 46(5), 529-533 [10.1016/j.orl.2018.08.005].

A binarisation heuristic for non-convex quadratic programming with box constraints

Galli, Laura;
2018

Abstract

Non-convex quadratic programming with box constraints is a fundamental problem in the global optimisation literature, being one of the simplest NP-hard nonlinear programs. We present a new heuristic for this problem, which enables one to obtain solutions of excellent quality in reasonable computing times. The heuristic consists of four phases: binarisation, convexification, branch-and-bound, and local optimisation. Some very encouraging computational results are given.
2018
Galli, L., Letchford, A.N. (2018). A binarisation heuristic for non-convex quadratic programming with box constraints. OPERATIONS RESEARCH LETTERS, 46(5), 529-533 [10.1016/j.orl.2018.08.005].
Galli, Laura; Letchford, Adam N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/999993
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact