Continuous fiber fused filament fabrication (CF4) is a layer-by-layer additive manufacturing technique that deposits continuous fiber fused filaments (CFFFs) with a significant in-plane variation of the fiber trajectory, thereby offering great flexibility in fabricating variable-stiffness composite laminates (VSCLs). We introduce a topology optimization method for the design of additively manufactured VSCLs made of overlapping, fiber-reinforced bars. The proposed method is based on geometry projection (GP) techniques, whereby the bars are represented by high-level geometric primitives. As in other GP techniques, this high-level parameterization is mapped onto a fixed structured finite element mesh for conducting analysis, as in density-based topology optimization techniques. However, unlike previous GP techniques that have demonstrated their applicability in designing structures as assemblies of individual fiber-reinforced components, this work focuses on the design of composite structures that adhere to CF4 manufacturing processes. Therefore, we first formulate a material interpolation scheme that better captures the stiffness at the composite’s joints obtained from bar overlaps as a stack. Second, the proposed material interpolation employs composite laminate theory to capture the in-plane and out-of-plane behavior of the structure. Third, to produce designs that conform to the CF4 process, we also proposed a novel length constraint formulation in the form of penalization on the projection scheme, which ensures a minimum length for all the bars. This minimum length limit does not require adding a constraint to the optimization problem. The efficacy and efficiency of the proposed method are demonstrated by a series of compliance minimization problems with in-plane and/or out-of-plane loading. The methodology is also applied to the design of a displacement inverter compliant mechanism.
Gandhi, Y., Aragón, A.M., Norato, J., Minak, G. (2025). A geometry projection method for the topology optimization of additively manufactured variable-stiffness composite laminates. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 435, 1-21 [10.1016/j.cma.2024.117663].
A geometry projection method for the topology optimization of additively manufactured variable-stiffness composite laminates
Yogesh Gandhi
Investigation
;Giangiacomo MinakSupervision
2025
Abstract
Continuous fiber fused filament fabrication (CF4) is a layer-by-layer additive manufacturing technique that deposits continuous fiber fused filaments (CFFFs) with a significant in-plane variation of the fiber trajectory, thereby offering great flexibility in fabricating variable-stiffness composite laminates (VSCLs). We introduce a topology optimization method for the design of additively manufactured VSCLs made of overlapping, fiber-reinforced bars. The proposed method is based on geometry projection (GP) techniques, whereby the bars are represented by high-level geometric primitives. As in other GP techniques, this high-level parameterization is mapped onto a fixed structured finite element mesh for conducting analysis, as in density-based topology optimization techniques. However, unlike previous GP techniques that have demonstrated their applicability in designing structures as assemblies of individual fiber-reinforced components, this work focuses on the design of composite structures that adhere to CF4 manufacturing processes. Therefore, we first formulate a material interpolation scheme that better captures the stiffness at the composite’s joints obtained from bar overlaps as a stack. Second, the proposed material interpolation employs composite laminate theory to capture the in-plane and out-of-plane behavior of the structure. Third, to produce designs that conform to the CF4 process, we also proposed a novel length constraint formulation in the form of penalization on the projection scheme, which ensures a minimum length for all the bars. This minimum length limit does not require adding a constraint to the optimization problem. The efficacy and efficiency of the proposed method are demonstrated by a series of compliance minimization problems with in-plane and/or out-of-plane loading. The methodology is also applied to the design of a displacement inverter compliant mechanism.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0045782524009174-main.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
3.45 MB
Formato
Adobe PDF
|
3.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.