Cytomegalovirus (CMV) infection is associated with poor kidney transplant outcomes. While innate and adaptive immune cells have been implicated in its prevention, an in-depth characterization of the in vivo kinetics of multiple cell subsets and their role in protecting against CMV infection has not been achieved. Here, we performed high-dimensional immune phenotyping by mass cytometry, and functional assays, on 112 serially collected samples from CMV seropositive kidney transplant recipients. Advanced unsupervised deep learning analysis was used to assess immune cell populations that significantly correlated with prevention against CMV infection and anti-viral immune function. Prior to infection, kidney transplant recipients who developed CMV infection showed significantly lower CMV-specific cell-mediated immune (CMI) frequencies than those that did not. A broad diversity of circulating cell subsets within innate and adaptive immune compartments were associated with CMV infection or protective CMV-specific CMI. While percentages of CMV (tetramer-stained)-specific T cells associated with high CMI responses and clinical protection, circulating CD3+CD8midCD56+ NK-T cells overall strongly associated with low CMI and subsequent infection. However, three NK-T cell subsets sharing the CD11b surface marker associated with CMV protection and correlated with strong anti-viral CMI frequencies in vitro. These data were validated in two external independent cohorts of kidney transplant recipients. Thus, we newly describe the kinetics of a novel NK-T cell subset that may have a protective role in post-transplantation CMV infection. Our findings pave the way to more mechanistic studies aimed at understanding the function of these cells in protection against CMV infection.
Donadeu, L., Jouve, T., Bin, S., Hartzell, S., Crespo, E., Torija, A., et al. (2024). High-dimensional mass cytometry identified circulating natural killer T-cell subsets associated with protection from cytomegalovirus infection in kidney transplant recipients. KIDNEY INTERNATIONAL, 106(3), 482-495 [10.1016/j.kint.2024.03.027].
High-dimensional mass cytometry identified circulating natural killer T-cell subsets associated with protection from cytomegalovirus infection in kidney transplant recipients
Bin S.;La Manna G.;
2024
Abstract
Cytomegalovirus (CMV) infection is associated with poor kidney transplant outcomes. While innate and adaptive immune cells have been implicated in its prevention, an in-depth characterization of the in vivo kinetics of multiple cell subsets and their role in protecting against CMV infection has not been achieved. Here, we performed high-dimensional immune phenotyping by mass cytometry, and functional assays, on 112 serially collected samples from CMV seropositive kidney transplant recipients. Advanced unsupervised deep learning analysis was used to assess immune cell populations that significantly correlated with prevention against CMV infection and anti-viral immune function. Prior to infection, kidney transplant recipients who developed CMV infection showed significantly lower CMV-specific cell-mediated immune (CMI) frequencies than those that did not. A broad diversity of circulating cell subsets within innate and adaptive immune compartments were associated with CMV infection or protective CMV-specific CMI. While percentages of CMV (tetramer-stained)-specific T cells associated with high CMI responses and clinical protection, circulating CD3+CD8midCD56+ NK-T cells overall strongly associated with low CMI and subsequent infection. However, three NK-T cell subsets sharing the CD11b surface marker associated with CMV protection and correlated with strong anti-viral CMI frequencies in vitro. These data were validated in two external independent cohorts of kidney transplant recipients. Thus, we newly describe the kinetics of a novel NK-T cell subset that may have a protective role in post-transplantation CMV infection. Our findings pave the way to more mechanistic studies aimed at understanding the function of these cells in protection against CMV infection.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.