Among different Prussian Blue Analogues (PBAs), manganese hexacyanoferrate (MnHCF), with open framework and two abundant electroactive metal sites, exhibits high potential for the grid-scale aqueous rechargeable zinc-ion batteries (ARZIBs) application. Until now, the intercalation mechanism of Zn2+ into MnHCF has not been clearly illustrated. In this work, combining different synchrotron X-ray techniques, the structural and microscopic evolution of MnHCF in 3 m ZnSO4 electrolyte is comprehensively studied, and a thorough understanding of the intercalation/release dynamic, in terms of local and long-range domain, is provided. The elemental distribution and structural information of Fe, Mn, Zn inside MnHCF electrodes is obtained from the X-ray fluorescence (XRF) elemental maps and X-ray absorption spectroscopy (XAS). The in-depth analysis of extended X-ray absorption fine structure (EXAFS) signals confirm that the rearrangement of Mn site, evidencing the cleavage of the Mn─N bond with the formation of a Mn─O bond, in an octahedral environment. The phase transformation of MnHCF takes place exclusively during the 1st cycle, and a mixture of rhombohedral and cubic zinc hexacynoferrate (ZnHCF) phases are formed during the first charge process. Thereafter, the newly formed cubic ZnHCF phase becomes the only stable one, existing in the subsequent cycles and exhibiting excellent electrochemical stability.

Li, M., Maisuradze, M., Mullaliu, A., Carlomagno, I., Aquilanti, G., Plaisier, J.R., et al. (2024). Structural Evolution of Manganese Prussian Blue Analogue in Aqueous ZnSO4 Electrolyte. SMALL, Early view, 1-10 [10.1002/smll.202404584].

Structural Evolution of Manganese Prussian Blue Analogue in Aqueous ZnSO4 Electrolyte

Li M.;Maisuradze M.;Giorgetti M.
2024

Abstract

Among different Prussian Blue Analogues (PBAs), manganese hexacyanoferrate (MnHCF), with open framework and two abundant electroactive metal sites, exhibits high potential for the grid-scale aqueous rechargeable zinc-ion batteries (ARZIBs) application. Until now, the intercalation mechanism of Zn2+ into MnHCF has not been clearly illustrated. In this work, combining different synchrotron X-ray techniques, the structural and microscopic evolution of MnHCF in 3 m ZnSO4 electrolyte is comprehensively studied, and a thorough understanding of the intercalation/release dynamic, in terms of local and long-range domain, is provided. The elemental distribution and structural information of Fe, Mn, Zn inside MnHCF electrodes is obtained from the X-ray fluorescence (XRF) elemental maps and X-ray absorption spectroscopy (XAS). The in-depth analysis of extended X-ray absorption fine structure (EXAFS) signals confirm that the rearrangement of Mn site, evidencing the cleavage of the Mn─N bond with the formation of a Mn─O bond, in an octahedral environment. The phase transformation of MnHCF takes place exclusively during the 1st cycle, and a mixture of rhombohedral and cubic zinc hexacynoferrate (ZnHCF) phases are formed during the first charge process. Thereafter, the newly formed cubic ZnHCF phase becomes the only stable one, existing in the subsequent cycles and exhibiting excellent electrochemical stability.
2024
Li, M., Maisuradze, M., Mullaliu, A., Carlomagno, I., Aquilanti, G., Plaisier, J.R., et al. (2024). Structural Evolution of Manganese Prussian Blue Analogue in Aqueous ZnSO4 Electrolyte. SMALL, Early view, 1-10 [10.1002/smll.202404584].
Li, M.; Maisuradze, M.; Mullaliu, A.; Carlomagno, I.; Aquilanti, G.; Plaisier, J. R.; Giorgetti, M.
File in questo prodotto:
File Dimensione Formato  
Small - 2024 - Li - Structural Evolution of Manganese Prussian Blue Analogue in Aqueous ZnSO4 Electrolyte.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF Visualizza/Apri
smll202404584-sup-0001-suppmat.docx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.25 MB
Formato Microsoft Word XML
2.25 MB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/999196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact