— Standard identification methods give biased parameter estimates when recorded signals are corrupted by noise on both input and output sides. In previous papers it has been shown that the bias is significant in case the system is almost non-identifiable. This situation is investigated here for some general model structures

Söderström, T., Soverini, U. (2024). Bias Considerations When Identifying Systems from Noisy Input-Output Data - Extensions to General Model Structures. IEEE [10.23919/ECC64448.2024.10590941].

Bias Considerations When Identifying Systems from Noisy Input-Output Data - Extensions to General Model Structures

Soverini U.
Secondo
2024

Abstract

— Standard identification methods give biased parameter estimates when recorded signals are corrupted by noise on both input and output sides. In previous papers it has been shown that the bias is significant in case the system is almost non-identifiable. This situation is investigated here for some general model structures
2024
Proceedings 2024 European Control Conference (ECC).
3564
3569
Söderström, T., Soverini, U. (2024). Bias Considerations When Identifying Systems from Noisy Input-Output Data - Extensions to General Model Structures. IEEE [10.23919/ECC64448.2024.10590941].
Söderström, T.; Soverini, U.
File in questo prodotto:
File Dimensione Formato  
eivbiasp3f (002).pdf

accesso aperto

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 387.43 kB
Formato Adobe PDF
387.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/999175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact