The increasing adoption of electric vehicles (EVs) and the corresponding surge in lithium-ion battery (LIB) production have intensified the focus on sustainable end-of-life (EOL) management strategies (i.e., reuse, repurpose, remanufacture, and recycle). This paper presents a systematic literature review of the entire remanufacturing process of LIBs, aiming to offer a cohesive perspective on the approach that reduces the environmental impact of LIB waste by prolonging their lifecycle for reuse in their original EV applications. It reveals major issues from EOL collection to renewed batteries, clustering results into six research streams, and proposes a research agenda to develop integrative, data-driven models that incorporate technical, economic, and environmental considerations. Key findings highlight the need for standardised, non-damaging joining techniques, enhanced safety protocols for disassembly, and scalable cathode re-functionalisation methods. Recommendations include leveraging advanced technologies such as AI, machine learning, IoT, and blockchain to optimise remanufacturing processes and enhance supply chain transparency and efficiency. This comprehensive review aims to foster the development of sustainable remanufacturing practices, contributing to the circular economy and supporting the growth of the EV industry.
Neri, A., Butturi, M.A., Gamberini, R. (2024). Sustainable management of electric vehicle battery remanufacturing: A systematic literature review and future directions. JOURNAL OF MANUFACTURING SYSTEMS, 77, 859-874 [10.1016/j.jmsy.2024.10.006].
Sustainable management of electric vehicle battery remanufacturing: A systematic literature review and future directions
Neri A.
Primo
;
2024
Abstract
The increasing adoption of electric vehicles (EVs) and the corresponding surge in lithium-ion battery (LIB) production have intensified the focus on sustainable end-of-life (EOL) management strategies (i.e., reuse, repurpose, remanufacture, and recycle). This paper presents a systematic literature review of the entire remanufacturing process of LIBs, aiming to offer a cohesive perspective on the approach that reduces the environmental impact of LIB waste by prolonging their lifecycle for reuse in their original EV applications. It reveals major issues from EOL collection to renewed batteries, clustering results into six research streams, and proposes a research agenda to develop integrative, data-driven models that incorporate technical, economic, and environmental considerations. Key findings highlight the need for standardised, non-damaging joining techniques, enhanced safety protocols for disassembly, and scalable cathode re-functionalisation methods. Recommendations include leveraging advanced technologies such as AI, machine learning, IoT, and blockchain to optimise remanufacturing processes and enhance supply chain transparency and efficiency. This comprehensive review aims to foster the development of sustainable remanufacturing practices, contributing to the circular economy and supporting the growth of the EV industry.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.