We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} and regularization parameter beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.
Liu, S., Simoncini, V. (2024). Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation. JOURNAL OF SCIENTIFIC COMPUTING, 101(3), 1-26 [10.1007/s10915-024-02717-9].
Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation
Simoncini V.Secondo
2024
Abstract
We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} and regularization parameter beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.