In this paper we give a meromorphic continuation of the spectral zeta function for second order semiregular Non-Commutative Harmonic Oscillators (NCHO). By “semiregular systems” we mean systems with terms with degree of homogeneity scaling by 1 in their asymptotic expansion. As an application of our results, we first compute the meromorphic continuation of the Jaynes-Cummings (JC) model spectral zeta function. Then we compute the spectral zeta function of the JC generalization to a 3-level atom in a cavity. For both of them we show that it has only one pole in 1.

Malagutti, M. (2023). On the spectral zeta function of second order semiregular non-commutative harmonic oscillators. BULLETIN DES SCIENCES MATHEMATIQUES, 187, 1-29 [10.1016/j.bulsci.2023.103286].

On the spectral zeta function of second order semiregular non-commutative harmonic oscillators

Malagutti M.
2023

Abstract

In this paper we give a meromorphic continuation of the spectral zeta function for second order semiregular Non-Commutative Harmonic Oscillators (NCHO). By “semiregular systems” we mean systems with terms with degree of homogeneity scaling by 1 in their asymptotic expansion. As an application of our results, we first compute the meromorphic continuation of the Jaynes-Cummings (JC) model spectral zeta function. Then we compute the spectral zeta function of the JC generalization to a 3-level atom in a cavity. For both of them we show that it has only one pole in 1.
2023
Malagutti, M. (2023). On the spectral zeta function of second order semiregular non-commutative harmonic oscillators. BULLETIN DES SCIENCES MATHEMATIQUES, 187, 1-29 [10.1016/j.bulsci.2023.103286].
Malagutti, M.
File in questo prodotto:
File Dimensione Formato  
Malagutti_SpectralZetaFunctionOfSecondOrderSemiregularNon-CommutativeHarmonicOscillators.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 480.63 kB
Formato Adobe PDF
480.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact