In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.

Menkveld, A.J., Dreber, A., Holzmeister, F., Huber, J., Johannesson, M., Kirchler, M., et al. (2024). Nonstandard Errors. THE JOURNAL OF FINANCE, 79(3), 2339-2390 [10.1111/jofi.13337].

Nonstandard Errors

BROWNLEES, CHRISTIAN;COLLIARD, JEAN‐EDOUARD;FOUCAULT, THIERRY;HUANG, DA;RENO, ROBERTO;ROGNONE, LAVINIA;TRAPIN, LUCA;VALENTE, GIORGIO;VOIGT, STEFAN;ZHANG, XIAOYU;
2024

Abstract

In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.
2024
Menkveld, A.J., Dreber, A., Holzmeister, F., Huber, J., Johannesson, M., Kirchler, M., et al. (2024). Nonstandard Errors. THE JOURNAL OF FINANCE, 79(3), 2339-2390 [10.1111/jofi.13337].
Menkveld, ALBERT J.; Dreber, Anna; Holzmeister, Felix; Huber, Juergen; Johannesson, Magnus; Kirchler, Michael; Neusüß, Sebastian; Razen, Michael; Weit...espandi
File in questo prodotto:
File Dimensione Formato  
The Journal of Finance - 2024 - MENKVELD - Nonstandard Errors.pdf

accesso aperto

Descrizione: VoR
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact