We propose a new semi-Lagrangian scheme for the game infinity-Laplacian. We demonstrate the convergence of the scheme to the viscosity solution of the given problem, showing its consistency, monotonicity, and stability. The proof of this result is established following the Barles-Souganidis analysis. This analysis assumes convergence at the boundary in a strong sense and is applied to our proposed scheme, augmented with an artificial viscosity term.

Carlini, E., Tozza, S. (2025). A Convergent Semi-Lagrangian Scheme for the Game ∞-Laplacian. DYNAMIC GAMES AND APPLICATIONS, 15(2), 406-416 [10.1007/s13235-024-00596-1].

A Convergent Semi-Lagrangian Scheme for the Game ∞-Laplacian

Tozza S.
2025

Abstract

We propose a new semi-Lagrangian scheme for the game infinity-Laplacian. We demonstrate the convergence of the scheme to the viscosity solution of the given problem, showing its consistency, monotonicity, and stability. The proof of this result is established following the Barles-Souganidis analysis. This analysis assumes convergence at the boundary in a strong sense and is applied to our proposed scheme, augmented with an artificial viscosity term.
2025
Carlini, E., Tozza, S. (2025). A Convergent Semi-Lagrangian Scheme for the Game ∞-Laplacian. DYNAMIC GAMES AND APPLICATIONS, 15(2), 406-416 [10.1007/s13235-024-00596-1].
Carlini, E.; Tozza, S.
File in questo prodotto:
File Dimensione Formato  
s13235-024-00596-1.pdf

accesso aperto

Descrizione: pdf versione pubblicata
Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 353.87 kB
Formato Adobe PDF
353.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact