We propose an approach for generating macroeconomic density forecasts that incorporate information on multiple scenarios defined by experts. We adopt a regime-switching framework in which sets of scenarios (“views”) are used as Bayesian priors on economic regimes. Predictive densities coming from different views are then combined by optimizing objective functions of density forecasting. We illustrate the approach with an empirical application to quarterly real-time forecasts of the US GDP growth rate, in which we exploit the Fed's macroeconomic scenarios used for bank stress tests. We show that the approach achieves good accuracy in terms of average predictive scores and good calibration of forecast distributions. Moreover, it can be used to evaluate the contribution of economists' scenarios to density forecast performance.

Moramarco, G. (2025). Regime‐Switching Density Forecasts Using Economists' Scenarios. JOURNAL OF FORECASTING, 44(2), 833-845 [10.1002/for.3228].

Regime‐Switching Density Forecasts Using Economists' Scenarios

Moramarco, Graziano
2025

Abstract

We propose an approach for generating macroeconomic density forecasts that incorporate information on multiple scenarios defined by experts. We adopt a regime-switching framework in which sets of scenarios (“views”) are used as Bayesian priors on economic regimes. Predictive densities coming from different views are then combined by optimizing objective functions of density forecasting. We illustrate the approach with an empirical application to quarterly real-time forecasts of the US GDP growth rate, in which we exploit the Fed's macroeconomic scenarios used for bank stress tests. We show that the approach achieves good accuracy in terms of average predictive scores and good calibration of forecast distributions. Moreover, it can be used to evaluate the contribution of economists' scenarios to density forecast performance.
2025
Moramarco, G. (2025). Regime‐Switching Density Forecasts Using Economists' Scenarios. JOURNAL OF FORECASTING, 44(2), 833-845 [10.1002/for.3228].
Moramarco, Graziano
File in questo prodotto:
File Dimensione Formato  
onlineappendix.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 419.82 kB
Formato Adobe PDF
419.82 kB Adobe PDF Visualizza/Apri
Journal of Forecasting - 2024 - Moramarco - Regime‐Switching Density Forecasts Using Economists Scenarios.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact