Diffusers are devices found in several engineering applications and their performance and design are object of numerous investigations. However, relatively few investigations have been dedicated to diffusers operating at low and moderate Reynolds numbers. In this regime, the flow could be laminar, turbulent or transitional, and the aerodynamic performance of the diffuser becomes highly dependent on the specific value of the Reynolds number and inlet conditions. In particular, the present study focuses on evaluating the role of inlet conditions on the performance and flow behaviour of two-dimensional diffusers on this specific Reynolds number regime (Re≈8000). Furthermore, the diffuser discharges in a stationary chamber and it does not present a tail-pipe configuration, a condition that has not found a clear presence in the existing literature so far. A numerical investigation of two-dimensional plane diffusers was performed at Re=8163 for 9 different cases, combined varying the inlet turbulence intensity (0.05, 3, and 10 percent), and the velocity profile, characterised by different blockage factors (0, 0.05 and 0.33). For each case, the divergence angle ranged from 0 to 30 degrees, and several URANS simulations were performed using the k-ωTransitional SST model that accounts for the possible transition of the boundary layer. The results show that the design recommendations valid for high Reynolds number diffusers with a thin boundary layer are not always applicable, and extreme caution must be exercised when dealing with operating conditions that do not ensure a sufficiently high turbulence level at the inlet. The divergence angles of the stall regimes are shown, and performance indicators (e.g. pressure-recovery coefficients) are reported. These reveal a strong decrement (up to 60 percent) of the pressure recovery on reducing turbulence intensity from 10 percent to 0.05 percent. The blockage factor of the velocity profile has an important effect on performance as well. In order to simplify the comparison between the different blockage factors, a modified effectiveness was employed to account for the distortion introduced by a non-uniform inlet velocity profile.

Ravaioli, A., Magal, R., Talamelli, A., Bellani, G. (2024). Performance Analysis of Two-Dimensional Plane Diffusers at a Moderate Reynolds Number by Means of Unsteady RANS. FLOW TURBULENCE AND COMBUSTION, 2024, 1-26 [10.1007/s10494-024-00599-3].

Performance Analysis of Two-Dimensional Plane Diffusers at a Moderate Reynolds Number by Means of Unsteady RANS

Ravaioli A.
;
Magal R.;Talamelli A.;Bellani G.
2024

Abstract

Diffusers are devices found in several engineering applications and their performance and design are object of numerous investigations. However, relatively few investigations have been dedicated to diffusers operating at low and moderate Reynolds numbers. In this regime, the flow could be laminar, turbulent or transitional, and the aerodynamic performance of the diffuser becomes highly dependent on the specific value of the Reynolds number and inlet conditions. In particular, the present study focuses on evaluating the role of inlet conditions on the performance and flow behaviour of two-dimensional diffusers on this specific Reynolds number regime (Re≈8000). Furthermore, the diffuser discharges in a stationary chamber and it does not present a tail-pipe configuration, a condition that has not found a clear presence in the existing literature so far. A numerical investigation of two-dimensional plane diffusers was performed at Re=8163 for 9 different cases, combined varying the inlet turbulence intensity (0.05, 3, and 10 percent), and the velocity profile, characterised by different blockage factors (0, 0.05 and 0.33). For each case, the divergence angle ranged from 0 to 30 degrees, and several URANS simulations were performed using the k-ωTransitional SST model that accounts for the possible transition of the boundary layer. The results show that the design recommendations valid for high Reynolds number diffusers with a thin boundary layer are not always applicable, and extreme caution must be exercised when dealing with operating conditions that do not ensure a sufficiently high turbulence level at the inlet. The divergence angles of the stall regimes are shown, and performance indicators (e.g. pressure-recovery coefficients) are reported. These reveal a strong decrement (up to 60 percent) of the pressure recovery on reducing turbulence intensity from 10 percent to 0.05 percent. The blockage factor of the velocity profile has an important effect on performance as well. In order to simplify the comparison between the different blockage factors, a modified effectiveness was employed to account for the distortion introduced by a non-uniform inlet velocity profile.
2024
Ravaioli, A., Magal, R., Talamelli, A., Bellani, G. (2024). Performance Analysis of Two-Dimensional Plane Diffusers at a Moderate Reynolds Number by Means of Unsteady RANS. FLOW TURBULENCE AND COMBUSTION, 2024, 1-26 [10.1007/s10494-024-00599-3].
Ravaioli, A.; Magal, R.; Talamelli, A.; Bellani, G.
File in questo prodotto:
File Dimensione Formato  
Paper_diff_FTC_review2.pdf

embargo fino al 05/11/2025

Descrizione: Accepted unformatted version
Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact