We present a method to search for transient gravitational waves using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time–frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of gravitational wave candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time–frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.

Accadia T, Acernese F, Antonucci F, Aoudia S, Arun KG, Astone P, et al. (2010). Commissioning status of the Virgo interferometer. CLASSICAL AND QUANTUM GRAVITY, 27(14), 114046-114056 [10.1088/0264-9381/27/14/149801].

Commissioning status of the Virgo interferometer

Cuoco E;
2010

Abstract

We present a method to search for transient gravitational waves using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time–frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of gravitational wave candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time–frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.
2010
Accadia T, Acernese F, Antonucci F, Aoudia S, Arun KG, Astone P, et al. (2010). Commissioning status of the Virgo interferometer. CLASSICAL AND QUANTUM GRAVITY, 27(14), 114046-114056 [10.1088/0264-9381/27/14/149801].
Accadia T; Acernese F; Antonucci F; Aoudia S; Arun KG; Astone P; Ballardin G; Barone F; Barsuglia M; Bauer TS; Beker MG; Bigotta S; Birindelli S; Bizo...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997052
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact