We present the results of a search for short- and intermediate-duration gravitational-wave signals from four magnetar bursts in Advanced LIGO' s second observing run. We find no evidence of a signal and set upper bounds on the root sum squared of the total dimensionless strain (h(rss)) from incoming intermediate-duration gravitational waves ranging from 1.1 x 10(-22) at 150 Hz to 4.4 x 10(-22) at 1550 Hz at 50% detection efficiency. From the known distance to the magnetar SGR 1806-20 (8.7 kpc), we can place upper bounds on the isotropic gravitational-wave energy of 3.4 x 10(44) erg at 150 Hz assuming optimal orientation. This represents an improvement of about a factor of 10 in strain sensitivity from the previous search for such signals, conducted during initial LIGO' s sixth science run. The short-duration search yielded upper limits of 2.1 x 10(44) erg for short white noise bursts, and 2.3 x 10(47) erg for 100 ms long ringdowns at 1500 Hz, both at 50% detection efficiency.

Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, et al. (2019). Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. THE ASTROPHYSICAL JOURNAL, 874(2), 163-176 [10.3847/1538-4357/ab0e15].

Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run

Cuoco E;
2019

Abstract

We present the results of a search for short- and intermediate-duration gravitational-wave signals from four magnetar bursts in Advanced LIGO' s second observing run. We find no evidence of a signal and set upper bounds on the root sum squared of the total dimensionless strain (h(rss)) from incoming intermediate-duration gravitational waves ranging from 1.1 x 10(-22) at 150 Hz to 4.4 x 10(-22) at 1550 Hz at 50% detection efficiency. From the known distance to the magnetar SGR 1806-20 (8.7 kpc), we can place upper bounds on the isotropic gravitational-wave energy of 3.4 x 10(44) erg at 150 Hz assuming optimal orientation. This represents an improvement of about a factor of 10 in strain sensitivity from the previous search for such signals, conducted during initial LIGO' s sixth science run. The short-duration search yielded upper limits of 2.1 x 10(44) erg for short white noise bursts, and 2.3 x 10(47) erg for 100 ms long ringdowns at 1500 Hz, both at 50% detection efficiency.
2019
Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, et al. (2019). Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. THE ASTROPHYSICAL JOURNAL, 874(2), 163-176 [10.3847/1538-4357/ab0e15].
Abbott BP; Abbott R; Abbott TD; Abraham S; Acernese F; Ackley K; Adams C; Adhikari RX; Adya VB; Affeldt C; Agathos M; Agatsuma K; Aggarwal N; Aguiar O...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997047
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 35
social impact