The background of gravitational waves (GW) has long been studied and remains one of the most exciting aspects in the observation and analysis of gravitational radiation. The paper focuses on the search for the background of gravitational waves using deep neural networks. An astrophysical background due to the presence of many binary black hole coalescences was simulated for Advanced LIGO O3 sensitivity and the Einstein Telescope (ET) design sensitivity. The detection pipeline targets signal data out of the noisy detector background. Its architecture comprises of simulated whitened data as input to three classes of deep neural networks algorithms: a 1D and a 2D convolutional neural network (CNN) and a Long Short Term Memory (LSTM) network. It was found that all three algorithms could distinguish signals from noise with high precision for the ET sensitivity, but the current sensitivity of LIGO is too low to permit the algorithms to learn signal features from the input vectors.
Utina A., Marangio F., Morawski F., Iess A., Regimbau T., Fiameni G., et al. (2021). Deep learning searches for gravitational wave stochastic backgrounds [10.1109/CBMI50038.2021.9461904].
Deep learning searches for gravitational wave stochastic backgrounds
Cuoco E.
2021
Abstract
The background of gravitational waves (GW) has long been studied and remains one of the most exciting aspects in the observation and analysis of gravitational radiation. The paper focuses on the search for the background of gravitational waves using deep neural networks. An astrophysical background due to the presence of many binary black hole coalescences was simulated for Advanced LIGO O3 sensitivity and the Einstein Telescope (ET) design sensitivity. The detection pipeline targets signal data out of the noisy detector background. Its architecture comprises of simulated whitened data as input to three classes of deep neural networks algorithms: a 1D and a 2D convolutional neural network (CNN) and a Long Short Term Memory (LSTM) network. It was found that all three algorithms could distinguish signals from noise with high precision for the ET sensitivity, but the current sensitivity of LIGO is too low to permit the algorithms to learn signal features from the input vectors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.