Gravitational waves are emitted from deep within a core-collapse supernova, which may enable us to determine the mechanism of the explosion from a gravitational-wave detection. Previous studies suggested that it is possible to determine if the explosion mechanism is neutrino-driven or magneto-rotationally powered from the gravitational-wave signal. However, long duration magneto-rotational waveforms, that cover the full explosion phase, were not available during the time of previous studies, and explosions were just assumed to be magneto-rotationally driven if the model was rapidly rotating. Therefore, we perform an updated study using new 3D long-duration magneto-rotational core-collapse supernova waveforms that cover the full explosion phase, injected into noise for the Advanced LIGO, Einstein Telescope and NEMO gravitational-wave detectors. We also include a category for failed explosions in our signal classification results. We then determine the explosion mechanism of the signals using three different methods: Bayesian model selection, dictionary learning, and convolutional neural networks. The three different methods are able to distinguish between neutrino-driven explosions and magneto-rotational explosions, even if the neutrino-driven explosion model is rapidly rotating. However they can only distinguish between the nonexploding and neutrino-driven explosions for signals with a high signal to noise ratio.

Powell, J. (2024). Determining the core-collapse supernova explosion mechanism with current and future gravitational-wave observatories. PHYSICAL REVIEW D, 109, 063019-063030 [10.1103/PhysRevD.109.063019].

Determining the core-collapse supernova explosion mechanism with current and future gravitational-wave observatories

Cuoco Elena;
2024

Abstract

Gravitational waves are emitted from deep within a core-collapse supernova, which may enable us to determine the mechanism of the explosion from a gravitational-wave detection. Previous studies suggested that it is possible to determine if the explosion mechanism is neutrino-driven or magneto-rotationally powered from the gravitational-wave signal. However, long duration magneto-rotational waveforms, that cover the full explosion phase, were not available during the time of previous studies, and explosions were just assumed to be magneto-rotationally driven if the model was rapidly rotating. Therefore, we perform an updated study using new 3D long-duration magneto-rotational core-collapse supernova waveforms that cover the full explosion phase, injected into noise for the Advanced LIGO, Einstein Telescope and NEMO gravitational-wave detectors. We also include a category for failed explosions in our signal classification results. We then determine the explosion mechanism of the signals using three different methods: Bayesian model selection, dictionary learning, and convolutional neural networks. The three different methods are able to distinguish between neutrino-driven explosions and magneto-rotational explosions, even if the neutrino-driven explosion model is rapidly rotating. However they can only distinguish between the nonexploding and neutrino-driven explosions for signals with a high signal to noise ratio.
2024
Powell, J. (2024). Determining the core-collapse supernova explosion mechanism with current and future gravitational-wave observatories. PHYSICAL REVIEW D, 109, 063019-063030 [10.1103/PhysRevD.109.063019].
Powell, Jade, Iess, Alberto, Llorens-Monteagudo, Miquel,Obergaulinger, Martin, Muller, Bernhard, Torres-Fornè, Alejandro, Cuoco, Elena, Font Josè A....espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/996464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact