We consider weak solutions u:ΩT→RN to parabolic systems of the type ut−divA(x,t,Du)=finΩT=Ω×(0,T), where Ω is a bounded open subset of Rn for n≥2, T>0 and the datum f belongs to a suitable Orlicz space. The main novelty here is that the partial map ξ↦A(x,t,ξ) satisfies standard p-growth and ellipticity conditions for p>1 only outside the unit ball {|ξ|<1}. For p>[Formula presented] we establish that any weak solution u∈C0((0,T);L2(Ω,RN))∩Lp(0,T;W1,p(Ω,RN)) admits a locally bounded spatial gradient Du. Moreover, assuming that u is essentially bounded, we recover the same result in the case 1
Ambrosio, P., Bauerlein, F. (2024). Gradient bounds for strongly singular or degenerate parabolic systems. JOURNAL OF DIFFERENTIAL EQUATIONS, 401, 492-549 [10.1016/j.jde.2024.05.008].
Gradient bounds for strongly singular or degenerate parabolic systems
Ambrosio P.Primo
;
2024
Abstract
We consider weak solutions u:ΩT→RN to parabolic systems of the type ut−divA(x,t,Du)=finΩT=Ω×(0,T), where Ω is a bounded open subset of Rn for n≥2, T>0 and the datum f belongs to a suitable Orlicz space. The main novelty here is that the partial map ξ↦A(x,t,ξ) satisfies standard p-growth and ellipticity conditions for p>1 only outside the unit ball {|ξ|<1}. For p>[Formula presented] we establish that any weak solution u∈C0((0,T);L2(Ω,RN))∩Lp(0,T;W1,p(Ω,RN)) admits a locally bounded spatial gradient Du. Moreover, assuming that u is essentially bounded, we recover the same result in the case 1File | Dimensione | Formato | |
---|---|---|---|
Gradient bounds for strongly singular or degenerate parabolic systems.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
641.65 kB
Formato
Adobe PDF
|
641.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.