We consider weak solutions u:ΩT→RN to parabolic systems of the type ut−divA(x,t,Du)=finΩT=Ω×(0,T), where Ω is a bounded open subset of Rn for n≥2, T>0 and the datum f belongs to a suitable Orlicz space. The main novelty here is that the partial map ξ↦A(x,t,ξ) satisfies standard p-growth and ellipticity conditions for p>1 only outside the unit ball {|ξ|<1}. For p>[Formula presented] we establish that any weak solution u∈C0((0,T);L2(Ω,RN))∩Lp(0,T;W1,p(Ω,RN)) admits a locally bounded spatial gradient Du. Moreover, assuming that u is essentially bounded, we recover the same result in the case 1

Ambrosio, P., Bauerlein, F. (2024). Gradient bounds for strongly singular or degenerate parabolic systems. JOURNAL OF DIFFERENTIAL EQUATIONS, 401, 492-549 [10.1016/j.jde.2024.05.008].

Gradient bounds for strongly singular or degenerate parabolic systems

Ambrosio P.
Primo
;
2024

Abstract

We consider weak solutions u:ΩT→RN to parabolic systems of the type ut−divA(x,t,Du)=finΩT=Ω×(0,T), where Ω is a bounded open subset of Rn for n≥2, T>0 and the datum f belongs to a suitable Orlicz space. The main novelty here is that the partial map ξ↦A(x,t,ξ) satisfies standard p-growth and ellipticity conditions for p>1 only outside the unit ball {|ξ|<1}. For p>[Formula presented] we establish that any weak solution u∈C0((0,T);L2(Ω,RN))∩Lp(0,T;W1,p(Ω,RN)) admits a locally bounded spatial gradient Du. Moreover, assuming that u is essentially bounded, we recover the same result in the case 1
2024
Ambrosio, P., Bauerlein, F. (2024). Gradient bounds for strongly singular or degenerate parabolic systems. JOURNAL OF DIFFERENTIAL EQUATIONS, 401, 492-549 [10.1016/j.jde.2024.05.008].
Ambrosio, P.; Bauerlein, F.
File in questo prodotto:
File Dimensione Formato  
Gradient bounds for strongly singular or degenerate parabolic systems.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 641.65 kB
Formato Adobe PDF
641.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/996401
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact