Quantitative microstructural analysis of XCT 3D images is key for quality assurance of materials and components. In this paper we implement a Graph Convolutional Neural Network (GCNN) architecture to segment a complex Al-Si Metal Matrix composite XCT volume (3D image). We train the model on a synthetic dataset and we assess its performance on both synthetic and experimental, manually-labeled, datasets. Our simple GCNN shows a comparable performance, measured via the Dice score, to more standard machine learning methods, but uses a greatly reduced number of parameters (less than 1/10 of parameters), features low training time, and needs little hardware resources. Our GCNN thus achieves a cost-effective reliable segmentation.

Lapenna, M., Tsamos, A., Faglioni, F., Fioresi, R., Zanchetta, F., Bruno, G. (2024). Geometric deep learning for enhanced quantitative analysis of microstructures in X-ray computed tomography data. DISCOVER APPLIED SCIENCES, 6(6), 1-10 [10.1007/s42452-024-05985-0].

Geometric deep learning for enhanced quantitative analysis of microstructures in X-ray computed tomography data

Lapenna M.;Faglioni F.;Fioresi R.;Zanchetta F.;
2024

Abstract

Quantitative microstructural analysis of XCT 3D images is key for quality assurance of materials and components. In this paper we implement a Graph Convolutional Neural Network (GCNN) architecture to segment a complex Al-Si Metal Matrix composite XCT volume (3D image). We train the model on a synthetic dataset and we assess its performance on both synthetic and experimental, manually-labeled, datasets. Our simple GCNN shows a comparable performance, measured via the Dice score, to more standard machine learning methods, but uses a greatly reduced number of parameters (less than 1/10 of parameters), features low training time, and needs little hardware resources. Our GCNN thus achieves a cost-effective reliable segmentation.
2024
Lapenna, M., Tsamos, A., Faglioni, F., Fioresi, R., Zanchetta, F., Bruno, G. (2024). Geometric deep learning for enhanced quantitative analysis of microstructures in X-ray computed tomography data. DISCOVER APPLIED SCIENCES, 6(6), 1-10 [10.1007/s42452-024-05985-0].
Lapenna, M.; Tsamos, A.; Faglioni, F.; Fioresi, R.; Zanchetta, F.; Bruno, G.
File in questo prodotto:
File Dimensione Formato  
das2024.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/996250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact