The present work takes an innovative point of view in the study of a marked point pattern dataset of two ants' species, over an irregular region with a spatial covariate. The approach, based on entropy measures, brings new insights to the interpretation of the behavior of such ants' nesting habits, which can be exploited in the general area of biodiversity evaluation. We make proper use of descriptive entropy measures and inferential approaches, performing a comparative study of their uncertainty and interpretability in the context of biodiversity. For the first time in the study of these ants' nests data, all the available information is fully exploited, and interpretation guidelines are given for assessing both the observed and the latent biodiversity of the system, with a simultaneous consideration of spatial structures, covariate and interpoint interaction effects. Computations are supported by the new release of our R package SpatEntropy.The present work takes an innovative point of view in the study of a marked point pattern dataset of two ants' species, over an irregular region with a spatial covariate. The approach, based on entropy measures, brings new insights to the interpretation of the behavior of such ants' nesting habits, which can be exploited in the general area of biodiversity evaluation. We make proper use of descriptive entropy measures and inferential approaches, performing a comparative study of their uncertainty and interpretability in the context of biodiversity. For the first time in the study of these ants' nests data, all the available information is fully exploited, and interpretation guidelines are given for assessing both the observed and the latent biodiversity of the system, with a simultaneous consideration of spatial structures, covariate and interpoint interaction effects. Computations are supported by the new release of our R package SpatEntropy.
Altieri, L., Cocchi, D., Ventrucci, M. (In stampa/Attività in corso). Entropy-Based Assessment of Biodiversity, With Application to Ants' Nests Data. ENVIRONMETRICS, 0, 1-15 [10.1002/env.2885].
Entropy-Based Assessment of Biodiversity, With Application to Ants' Nests Data
Linda Altieri
;Daniela Cocchi;Massimo Ventrucci
In corso di stampa
Abstract
The present work takes an innovative point of view in the study of a marked point pattern dataset of two ants' species, over an irregular region with a spatial covariate. The approach, based on entropy measures, brings new insights to the interpretation of the behavior of such ants' nesting habits, which can be exploited in the general area of biodiversity evaluation. We make proper use of descriptive entropy measures and inferential approaches, performing a comparative study of their uncertainty and interpretability in the context of biodiversity. For the first time in the study of these ants' nests data, all the available information is fully exploited, and interpretation guidelines are given for assessing both the observed and the latent biodiversity of the system, with a simultaneous consideration of spatial structures, covariate and interpoint interaction effects. Computations are supported by the new release of our R package SpatEntropy.The present work takes an innovative point of view in the study of a marked point pattern dataset of two ants' species, over an irregular region with a spatial covariate. The approach, based on entropy measures, brings new insights to the interpretation of the behavior of such ants' nesting habits, which can be exploited in the general area of biodiversity evaluation. We make proper use of descriptive entropy measures and inferential approaches, performing a comparative study of their uncertainty and interpretability in the context of biodiversity. For the first time in the study of these ants' nests data, all the available information is fully exploited, and interpretation guidelines are given for assessing both the observed and the latent biodiversity of the system, with a simultaneous consideration of spatial structures, covariate and interpoint interaction effects. Computations are supported by the new release of our R package SpatEntropy.File | Dimensione | Formato | |
---|---|---|---|
2024_Environmetrics_Ants Nests Data.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
567.96 kB
Formato
Adobe PDF
|
567.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.