After revisiting the properties of generalized trigonometric functions, i.e. the trigonometric function linked to the planar (Fermat) curve $x^p+y^p=1$, using the tool of Keplerian trigonometry we present the extension to this class of functions of the Wallis product, discovering connections with the representations of ordinary trigonometric functions by means of infinite products.
Gambini A., Nicoletti G., Ritelli D. (2025). The Wallis Products for Fermat Curves. VIETNAM JOURNAL OF MATHEMATICS, 53(1), 1-16 [10.1007/s10013-023-00617-3].
The Wallis Products for Fermat Curves
Nicoletti G.Secondo
;Ritelli D.
Ultimo
2025
Abstract
After revisiting the properties of generalized trigonometric functions, i.e. the trigonometric function linked to the planar (Fermat) curve $x^p+y^p=1$, using the tool of Keplerian trigonometry we present the extension to this class of functions of the Wallis product, discovering connections with the representations of ordinary trigonometric functions by means of infinite products.File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.