In recent decades, the livestock sector has significantly improved its efficiency, productivity, and environmental sustainability. Precision Livestock Farming (PLF) represents a driver in this direction, since it enables to monitor individual animals and herds, and supports the farmer in making better decisions. Although the benefits are clear on a livestock perspective, it is difficult to quantify the environmental benefit of having technology on farm, mostly due to the complexity of collecting data on the same farm before and after a certain solution. In this context, this paper focuses on the assessment of the environmental sustainability of a case-study Italian dairy cattle farm where different technologies were installed one by one: first a mechanical ventilation system (MV) and second an automatic milking system (AMS), without introducing other significant changes to the farm management and practices in the meantime. The environmental impact of milk production on the farm was quantified through the Life Cycle Assessment (LCA) method, and the initial farm configuration was compared with the two scenarios in which each technology was incorporated. Fat and protein corrected milk (FPCM) was used as Functional Unit, and a cradle to farm gate system boundary and biophysical allocation method were selected. This enabled to provide valuable insights for stakeholders about the effect on the environmental sustainability of the use of the two technologies. The results show that for all the evaluated impact categories there is an environmental benefit of the improved scenarios. The biggest benefit can be observed with the installation of mechanical ventilation, to which correspond benefits in terms of animal health, welfare and productivity. Then, also AMS entails sustainability improvements, mainly linked with increased efficiency and productivity. In conclusion, the use of technology on dairy farms improves not only the farm efficiency and the animal management, but also the environmental sustainability. Furthermore, the rapid technological advancements may further enhance this positive trend in reducing the contribution of livestock farming to the environmental impacts provided that farmers adopt them.

Lovarelli, D., Bovo, M., Giannone, C., Santolini, E., Tassinari, P., Guarino, M. (2024). Reducing life cycle environmental impacts of milk production through precision livestock farming. SUSTAINABLE PRODUCTION AND CONSUMPTION, 51(November 2024), 303-314 [10.1016/j.spc.2024.09.021].

Reducing life cycle environmental impacts of milk production through precision livestock farming

Bovo, Marco;Giannone, Claudia;Santolini, Enrica;Tassinari, Patrizia;Guarino, Marcella
2024

Abstract

In recent decades, the livestock sector has significantly improved its efficiency, productivity, and environmental sustainability. Precision Livestock Farming (PLF) represents a driver in this direction, since it enables to monitor individual animals and herds, and supports the farmer in making better decisions. Although the benefits are clear on a livestock perspective, it is difficult to quantify the environmental benefit of having technology on farm, mostly due to the complexity of collecting data on the same farm before and after a certain solution. In this context, this paper focuses on the assessment of the environmental sustainability of a case-study Italian dairy cattle farm where different technologies were installed one by one: first a mechanical ventilation system (MV) and second an automatic milking system (AMS), without introducing other significant changes to the farm management and practices in the meantime. The environmental impact of milk production on the farm was quantified through the Life Cycle Assessment (LCA) method, and the initial farm configuration was compared with the two scenarios in which each technology was incorporated. Fat and protein corrected milk (FPCM) was used as Functional Unit, and a cradle to farm gate system boundary and biophysical allocation method were selected. This enabled to provide valuable insights for stakeholders about the effect on the environmental sustainability of the use of the two technologies. The results show that for all the evaluated impact categories there is an environmental benefit of the improved scenarios. The biggest benefit can be observed with the installation of mechanical ventilation, to which correspond benefits in terms of animal health, welfare and productivity. Then, also AMS entails sustainability improvements, mainly linked with increased efficiency and productivity. In conclusion, the use of technology on dairy farms improves not only the farm efficiency and the animal management, but also the environmental sustainability. Furthermore, the rapid technological advancements may further enhance this positive trend in reducing the contribution of livestock farming to the environmental impacts provided that farmers adopt them.
2024
Lovarelli, D., Bovo, M., Giannone, C., Santolini, E., Tassinari, P., Guarino, M. (2024). Reducing life cycle environmental impacts of milk production through precision livestock farming. SUSTAINABLE PRODUCTION AND CONSUMPTION, 51(November 2024), 303-314 [10.1016/j.spc.2024.09.021].
Lovarelli, Daniela; Bovo, Marco; Giannone, Claudia; Santolini, Enrica; Tassinari, Patrizia; Guarino, Marcella
File in questo prodotto:
File Dimensione Formato  
2-1-s2.0-S2352550924002781-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 7.2 MB
Formato Adobe PDF
7.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/995313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact