We study geometric limits of convex-cocompact cyclic subgroups of the rank 1 groups SO0(1, k + 1) and SU (1, k + 1). We construct examples of sequences of subgroups of such groups that converge algebraically and whose geometric limits strictly contain the algebraic limits, thus generalizing the example first described by Jørgensen for subgroups of SO0(1, 3). We also give necessary and sufficient conditions for a subgroup of SO0(1, k + 1) to arise as the geometric limit of a sequence of cyclic subgroups. We then discuss generalizations of such examples to sequences of representations of nonabelian free groups, and applications of our constructions in that setting.

Maloni S., Pozzetti M.B. (2022). Geometric limits of cyclic subgroups of SO0 (1, k + 1) and SU (1, k + 1). ALGEBRAIC AND GEOMETRIC TOPOLOGY, 22(3), 1461-1495 [10.2140/agt.2022.22.1461].

Geometric limits of cyclic subgroups of SO0 (1, k + 1) and SU (1, k + 1)

Pozzetti M. B.
2022

Abstract

We study geometric limits of convex-cocompact cyclic subgroups of the rank 1 groups SO0(1, k + 1) and SU (1, k + 1). We construct examples of sequences of subgroups of such groups that converge algebraically and whose geometric limits strictly contain the algebraic limits, thus generalizing the example first described by Jørgensen for subgroups of SO0(1, 3). We also give necessary and sufficient conditions for a subgroup of SO0(1, k + 1) to arise as the geometric limit of a sequence of cyclic subgroups. We then discuss generalizations of such examples to sequences of representations of nonabelian free groups, and applications of our constructions in that setting.
2022
Maloni S., Pozzetti M.B. (2022). Geometric limits of cyclic subgroups of SO0 (1, k + 1) and SU (1, k + 1). ALGEBRAIC AND GEOMETRIC TOPOLOGY, 22(3), 1461-1495 [10.2140/agt.2022.22.1461].
Maloni S.; Pozzetti M.B.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/995048
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact