We give a lattice-theoretic characterization for a manifold of OG10 type to be birational to some moduli space of (twisted) sheaves on a K3 surface. We apply it to the Li-Pertusi-Zhao variety of OG10 type associated to any smooth cubic fourfold. Moreover, we determine when a birational transformation is induced by an automorphism of the K3 surface, and we use this to classify all induced birational symplectic involutions.
Felisetti C., Giovenzana F., Grossi A. (2024). O'Grady tenfolds as moduli spaces of sheaves. FORUM OF MATHEMATICS. SIGMA, 12, 1-20 [10.1017/fms.2024.46].
O'Grady tenfolds as moduli spaces of sheaves
Felisetti C.
;Giovenzana F.
;Grossi A.
2024
Abstract
We give a lattice-theoretic characterization for a manifold of OG10 type to be birational to some moduli space of (twisted) sheaves on a K3 surface. We apply it to the Li-Pertusi-Zhao variety of OG10 type associated to any smooth cubic fourfold. Moreover, we determine when a birational transformation is induced by an automorphism of the K3 surface, and we use this to classify all induced birational symplectic involutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
div-class-title-o-grady-tenfolds-as-moduli-spaces-of-sheaves-div.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
393.95 kB
Formato
Adobe PDF
|
393.95 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.