Various different definitions of multivariate process capability indices have been proposed in the literature. Most of the research works related to multivariate process capability indices assume no gauge measurement errors. However, in industrial applications, despite the use of highly advanced measuring instruments, account needs to be taken of gauge imprecision. In this paper we are going to examine the effects of measurement errors on multivariate process capability indices computed using the principal components analysis. We show that measurement errors alter the results of a multivariate process capability analysis, resulting in either a decrease or an increase in the capability of the process. In order to achieve accurate process capability assessments, we propose a method useful for overcoming the effects of gauge measurement errors.

M. Scagliarini (2011). Multivariate process capability using principal component analysis in the presence of measurement errors. ASTA ADVANCES IN STATISTICAL ANALYSIS, 95(2), 113-128 [10.1007/s10182-011-0156-3].

Multivariate process capability using principal component analysis in the presence of measurement errors

SCAGLIARINI, MICHELE
2011

Abstract

Various different definitions of multivariate process capability indices have been proposed in the literature. Most of the research works related to multivariate process capability indices assume no gauge measurement errors. However, in industrial applications, despite the use of highly advanced measuring instruments, account needs to be taken of gauge imprecision. In this paper we are going to examine the effects of measurement errors on multivariate process capability indices computed using the principal components analysis. We show that measurement errors alter the results of a multivariate process capability analysis, resulting in either a decrease or an increase in the capability of the process. In order to achieve accurate process capability assessments, we propose a method useful for overcoming the effects of gauge measurement errors.
2011
M. Scagliarini (2011). Multivariate process capability using principal component analysis in the presence of measurement errors. ASTA ADVANCES IN STATISTICAL ANALYSIS, 95(2), 113-128 [10.1007/s10182-011-0156-3].
M. Scagliarini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/99205
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact