The main objective consists in generalizing a well-known Itô formula of J. Jacod and A. Shiryaev: given a càdlàg process S, there is an equivalence between the fact that S is a semimartingale with given characteristics (Formula presented.) and a Itô formula type expansion of (Formula presented.), where F is a bounded function of class (Formula presented.). This result connects weak solutions of path-dependent SDEs and related martingale problems. We extend this to the case when S is a weak Dirichlet process. A second aspect of the paper consists of discussing some untreated features of stochastic calculus for finite quadratic variation processes.

Bandini, E., Russo, F. (2024). Characteristics and Itô's formula for weak Dirichlet processes: an equivalence result. STOCHASTICS, EARLY ACCESS, 1-24 [10.1080/17442508.2024.2397984].

Characteristics and Itô's formula for weak Dirichlet processes: an equivalence result

Bandini, Elena;
2024

Abstract

The main objective consists in generalizing a well-known Itô formula of J. Jacod and A. Shiryaev: given a càdlàg process S, there is an equivalence between the fact that S is a semimartingale with given characteristics (Formula presented.) and a Itô formula type expansion of (Formula presented.), where F is a bounded function of class (Formula presented.). This result connects weak solutions of path-dependent SDEs and related martingale problems. We extend this to the case when S is a weak Dirichlet process. A second aspect of the paper consists of discussing some untreated features of stochastic calculus for finite quadratic variation processes.
2024
Bandini, E., Russo, F. (2024). Characteristics and Itô's formula for weak Dirichlet processes: an equivalence result. STOCHASTICS, EARLY ACCESS, 1-24 [10.1080/17442508.2024.2397984].
Bandini, Elena; Russo, Francesco
File in questo prodotto:
File Dimensione Formato  
Revised_NOTA_Ito_formula.pdf

Open Access dal 12/09/2025

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 226.46 kB
Formato Adobe PDF
226.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/991394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact