In this paper we study monodromy operators on moduli spaces M-v (S, H) of sheaves on K3 surfaces with non-primitive Mukai vectors v. If we write v = mw , with m > 1 and w primitive, then our main result is that the inclusion M-w (S, H ) -> M-v (S, H ) as the most singular locus induces an isomorphism between the monodromy groups of these symplectic varieties, allowing us to extend to the non-primitive case a result of Markman.

Onorati, C., Perego, A., Rapagnetta, A. (2024). Locally trivial monodromy of moduli spaces of sheaves on K3 surfaces. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 377, 7259-7308 [10.1090/tran/9185].

Locally trivial monodromy of moduli spaces of sheaves on K3 surfaces

Onorati, Claudio;Perego, Arvid;
2024

Abstract

In this paper we study monodromy operators on moduli spaces M-v (S, H) of sheaves on K3 surfaces with non-primitive Mukai vectors v. If we write v = mw , with m > 1 and w primitive, then our main result is that the inclusion M-w (S, H ) -> M-v (S, H ) as the most singular locus induces an isomorphism between the monodromy groups of these symplectic varieties, allowing us to extend to the non-primitive case a result of Markman.
2024
Onorati, C., Perego, A., Rapagnetta, A. (2024). Locally trivial monodromy of moduli spaces of sheaves on K3 surfaces. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 377, 7259-7308 [10.1090/tran/9185].
Onorati, Claudio; Perego, Arvid; Rapagnetta, Antonio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/990998
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact