Classical shadows constitute a protocol to estimate the expectation values of a collection of M observables acting on O(1) qubits of an unknown n-qubit state with a number of measurements that is independent of n and that grows only logarithmically with M. We propose a local variant of the quantum Wasserstein distance of order 1 of De Palma et al. [IEEE Trans. Inf. Theory 67, 6627-6643 (2021)] and prove that the classical shadow obtained measuring O(log n) copies of the state to be learned constitutes an accurate estimate with respect to the proposed distance. We apply the results to quantum generative adversarial networks, showing that quantum access to the state to be learned can be useful only when some prior information on such state is available.

De Palma, G., Klein, T., Pastorello, D. (2024). Classical shadows meet quantum optimal mass transport. JOURNAL OF MATHEMATICAL PHYSICS, 65(9), 1-34 [10.1063/5.0178897].

Classical shadows meet quantum optimal mass transport

De Palma, Giacomo;Pastorello, Davide
2024

Abstract

Classical shadows constitute a protocol to estimate the expectation values of a collection of M observables acting on O(1) qubits of an unknown n-qubit state with a number of measurements that is independent of n and that grows only logarithmically with M. We propose a local variant of the quantum Wasserstein distance of order 1 of De Palma et al. [IEEE Trans. Inf. Theory 67, 6627-6643 (2021)] and prove that the classical shadow obtained measuring O(log n) copies of the state to be learned constitutes an accurate estimate with respect to the proposed distance. We apply the results to quantum generative adversarial networks, showing that quantum access to the state to be learned can be useful only when some prior information on such state is available.
2024
De Palma, G., Klein, T., Pastorello, D. (2024). Classical shadows meet quantum optimal mass transport. JOURNAL OF MATHEMATICAL PHYSICS, 65(9), 1-34 [10.1063/5.0178897].
De Palma, Giacomo; Klein, Tristan; Pastorello, Davide
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/990857
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact