In this work, we propose a method for self-organized adaptive task partitioning in a swarm of robots. Task partitioning refers to the decomposition of a task into less complex subtasks, which can then be tackled separately. Task partitioning can be observed in many species of social animals, where it provides several benefits for the group. Self-organized task partitioning in artificial swarm systems is currently not widely studied, although it has clear advantages in large groups. We propose a fully decentralized adaptive method that allows a swarm of robots to autonomously decide whether to partition a task into two sequential subtasks or not. The method is tested on a simulated foraging problem. We study the method’s performance in two different environments. In one environment the performance of the system is optimal when the foraging task is partitioned, in the other case when it is not. We show that by employing the method proposed in this paper, a swarm of autonomous robots can reach optimal performance in both environments.

Adaptive Task Partitioning in Swarms of Homogeneous Robots

ROLI, ANDREA;
2010

Abstract

In this work, we propose a method for self-organized adaptive task partitioning in a swarm of robots. Task partitioning refers to the decomposition of a task into less complex subtasks, which can then be tackled separately. Task partitioning can be observed in many species of social animals, where it provides several benefits for the group. Self-organized task partitioning in artificial swarm systems is currently not widely studied, although it has clear advantages in large groups. We propose a fully decentralized adaptive method that allows a swarm of robots to autonomously decide whether to partition a task into two sequential subtasks or not. The method is tested on a simulated foraging problem. We study the method’s performance in two different environments. In one environment the performance of the system is optimal when the foraging task is partitioned, in the other case when it is not. We show that by employing the method proposed in this paper, a swarm of autonomous robots can reach optimal performance in both environments.
2010
287
298
Frison, M.; Tran, N. L.; Baiboun, N.; Brutschy, A.; Pini, G.; Roli, Andrea; Dorigo, M.; Birattari, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/98993
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact