Recently, contention resolution diversity slotted ALOHA (CRDSA) has been introduced as a simple but effective improvement to slotted ALOHA. It relies on MAC burst repetitions and on interference cancellation to increase the normalized throughput of a classic slotted ALOHA access scheme. CRDSA allows achieving a larger throughput than slotted ALOHA, at the price of an increased average transmitted power. A way to trade-off the increment of the average transmitted power and the improvement of the throughput is presented in this paper. Specifically, it is proposed to divide each MAC burst in k sub-bursts, and to encode them via a (n, k) erasure correcting code. The n encoded sub-bursts are transmitted over the MAC channel, according to specific time/frequency-hopping patterns. Whenever n − e ≥ k sub-bursts (of the same burst) are received without collisions, erasure decoding allows recovering the remaining e sub-bursts (which were lost due to collisions). An interference cancellation process can then take place, removing in e slots the interference caused by the e recovered sub-bursts, possibly allowing the correct decoding of sub-bursts related to other bursts. The process is thus iterated as for the CRDSA case.

High-Throughput Random Access via Codes on Graphs

PAOLINI, ENRICO;CHIANI, MARCO
2010

Abstract

Recently, contention resolution diversity slotted ALOHA (CRDSA) has been introduced as a simple but effective improvement to slotted ALOHA. It relies on MAC burst repetitions and on interference cancellation to increase the normalized throughput of a classic slotted ALOHA access scheme. CRDSA allows achieving a larger throughput than slotted ALOHA, at the price of an increased average transmitted power. A way to trade-off the increment of the average transmitted power and the improvement of the throughput is presented in this paper. Specifically, it is proposed to divide each MAC burst in k sub-bursts, and to encode them via a (n, k) erasure correcting code. The n encoded sub-bursts are transmitted over the MAC channel, according to specific time/frequency-hopping patterns. Whenever n − e ≥ k sub-bursts (of the same burst) are received without collisions, erasure decoding allows recovering the remaining e sub-bursts (which were lost due to collisions). An interference cancellation process can then take place, removing in e slots the interference caused by the e recovered sub-bursts, possibly allowing the correct decoding of sub-bursts related to other bursts. The process is thus iterated as for the CRDSA case.
2010
Proc. of Future Network & Mobile Summit 2010
101
108
G. Liva; E. Paolini; M. Chiani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/98920
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact