Sedimentation is the natural process of sediment transportation and deposition in quiescent water conditions. Sedimentation can affect the functionality of ports, harbours and navigation channels by reducing water depth, making navigation difficult, if not impossible. Different solutions are available to guarantee infrastructure functionality against sedimentation, with maintenance dredging being the most widely adopted. Alternative technologies for dredging have been developed and tested to reduce the environmental concerns related to dredging operations. Among other solutions, applying a sediment by-pass system based on a jet pump emerged as one of the most promising. While the existing literature covers the techno-economic aspects of sediment by-pass systems, the environmental impacts must be better evaluated and assessed. This paper aims to resolve this gap by evaluating, through the ReCiPe2016 life cycle assessment (LCA) methodology, the environmental impact of an innovative sediment by-pass system called an "ejectors plant". The LCA results are based on the demonstrator established in Cervia Harbour in Italy, which was extensively monitored for 15 months during its operation. This paper shows how energy consumption during the operation phase highly affects the considered midpoint and endpoint categories. For example, the GWP100 of the ejectors plant, considering the Italian electricity mix, equals 1.75 million tons of equivalent CO2 over 20 years, while under a low-carbon scenario, it is reduced to 0.17. In that case, material consumption in the construction phase becomes dominant, thus highlighting the importance of eco-innovation of ejectors plants to minimise oxidant formation. Finally, this paper compares the ejectors plant and traditional dredging through environmental LCA. The ejectors plant had a lower impact in all categories except for GWP-related categories. The sensitivity analysis showed how such a conclusion may be mitigated by considering different electricity mixes and maintenance dredging working cycles.
Pellegrini M., Saccani C., Guzzini A. (2024). Environmental Life Cycle Assessment of Innovative Ejectors Plant Technology for Sediment By-Pass in Harbours and Ports. SUSTAINABILITY, 16(17), 1-28 [10.3390/su16177809].
Environmental Life Cycle Assessment of Innovative Ejectors Plant Technology for Sediment By-Pass in Harbours and Ports
Pellegrini M.
;Saccani C.;Guzzini A.
2024
Abstract
Sedimentation is the natural process of sediment transportation and deposition in quiescent water conditions. Sedimentation can affect the functionality of ports, harbours and navigation channels by reducing water depth, making navigation difficult, if not impossible. Different solutions are available to guarantee infrastructure functionality against sedimentation, with maintenance dredging being the most widely adopted. Alternative technologies for dredging have been developed and tested to reduce the environmental concerns related to dredging operations. Among other solutions, applying a sediment by-pass system based on a jet pump emerged as one of the most promising. While the existing literature covers the techno-economic aspects of sediment by-pass systems, the environmental impacts must be better evaluated and assessed. This paper aims to resolve this gap by evaluating, through the ReCiPe2016 life cycle assessment (LCA) methodology, the environmental impact of an innovative sediment by-pass system called an "ejectors plant". The LCA results are based on the demonstrator established in Cervia Harbour in Italy, which was extensively monitored for 15 months during its operation. This paper shows how energy consumption during the operation phase highly affects the considered midpoint and endpoint categories. For example, the GWP100 of the ejectors plant, considering the Italian electricity mix, equals 1.75 million tons of equivalent CO2 over 20 years, while under a low-carbon scenario, it is reduced to 0.17. In that case, material consumption in the construction phase becomes dominant, thus highlighting the importance of eco-innovation of ejectors plants to minimise oxidant formation. Finally, this paper compares the ejectors plant and traditional dredging through environmental LCA. The ejectors plant had a lower impact in all categories except for GWP-related categories. The sensitivity analysis showed how such a conclusion may be mitigated by considering different electricity mixes and maintenance dredging working cycles.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.