Multimodal Argument Mining (MAM) is a recent area of research aiming to extend argument analysis and improve discourse understanding by incorporating multiple modalities. Initial results confirm the importance of paralinguistic cues in this field. However, the research community still lacks a comprehensive platform where results can be easily reproduced, and methods and models can be stored, compared, and tested against a variety of benchmarks. To address these challenges, we propose MAMKit, an open, publicly available, PyTorch toolkit that consolidates datasets and models, providing a standardized platform for experimentation. MAMKit also includes some new baselines, designed to stimulate research on text and audio encoding and fusion for MAM tasks. Our initial results with MAMKit indicate that advancements in MAM require novel annotation processes to encompass auditory cues effectively.

Mancini, E., Ruggeri, F., Colamonaco, S., Zecca, A., Marro, S., Torroni, P. (2024). MAMKit: A Comprehensive Multimodal Argument Mining Toolkit. Association for Computational Linguistics [10.18653/v1/2024.argmining-1.7].

MAMKit: A Comprehensive Multimodal Argument Mining Toolkit

Mancini, Eleonora
Primo
;
Ruggeri, Federico
Secondo
;
Marro, Samuele;Torroni, Paolo
Ultimo
2024

Abstract

Multimodal Argument Mining (MAM) is a recent area of research aiming to extend argument analysis and improve discourse understanding by incorporating multiple modalities. Initial results confirm the importance of paralinguistic cues in this field. However, the research community still lacks a comprehensive platform where results can be easily reproduced, and methods and models can be stored, compared, and tested against a variety of benchmarks. To address these challenges, we propose MAMKit, an open, publicly available, PyTorch toolkit that consolidates datasets and models, providing a standardized platform for experimentation. MAMKit also includes some new baselines, designed to stimulate research on text and audio encoding and fusion for MAM tasks. Our initial results with MAMKit indicate that advancements in MAM require novel annotation processes to encompass auditory cues effectively.
2024
Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)
69
82
Mancini, E., Ruggeri, F., Colamonaco, S., Zecca, A., Marro, S., Torroni, P. (2024). MAMKit: A Comprehensive Multimodal Argument Mining Toolkit. Association for Computational Linguistics [10.18653/v1/2024.argmining-1.7].
Mancini, Eleonora; Ruggeri, Federico; Colamonaco, Stefano; Zecca, Andrea; Marro, Samuele; Torroni, Paolo
File in questo prodotto:
File Dimensione Formato  
2024.argmining-1.7.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 775.18 kB
Formato Adobe PDF
775.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/987158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact