One of the current challenges in the field of data mining is to develop techniques to analyze uncertain data. Among these techniques, in this paper we focus on decision tree classifiers. In particular, we introduce a new data structure that can be used to represent multiple decision trees generated from uncertain datasets.

M. Magnani, D. Montesi (2010). Uncertainty in decision tree classifiers. BERLIN : Springer.

Uncertainty in decision tree classifiers

MAGNANI, MATTEO;MONTESI, DANILO
2010

Abstract

One of the current challenges in the field of data mining is to develop techniques to analyze uncertain data. Among these techniques, in this paper we focus on decision tree classifiers. In particular, we introduce a new data structure that can be used to represent multiple decision trees generated from uncertain datasets.
2010
International conference on Scalable Uncertainty Management
250
263
M. Magnani, D. Montesi (2010). Uncertainty in decision tree classifiers. BERLIN : Springer.
M. Magnani; D. Montesi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/98567
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact