The evolution and taxonomy of Helicobacter bilis strains isolated in Italy and Finland were studied by phylogenetic analysis of different genes, comparative analysis of small rRNA gene intervening sequence (IVS), amplified fragment length polymorphism analysis and DNA–DNA hybridization. The results of this study divided the H. bilis strains into two distinct and divergent genomic groups. In the absence of a specific phenotype or pathotype to distinguish these groups, however, they may be referred to as two genomospecies: H. bilis sensu stricto and Helicobacter sp. FL56. The phylogenetic network of gyrB and ureB gene sequences, as well as the comparative analysis of small rRNA gene IVS, suggests independent evolution of the two genomospecies. In particular, Helicobacter sp. FL56 seems to be the result of adaptation of an ancestral H. bilis strain in a new host. The phenomenon of adaptation to different hosts, or different intestinal niches in the same host, associated with high mutation and recombination rates could explain the evolution and the complex taxonomy of the genus Helicobacter. A comprehensive phylogenomics study of this genus would be useful to properly investigate this hypothesis.

Delineation of two Helicobacter bilis genomospecies: implications for systematics and evolution

ZANONI, RENATO GIULIO;
2010

Abstract

The evolution and taxonomy of Helicobacter bilis strains isolated in Italy and Finland were studied by phylogenetic analysis of different genes, comparative analysis of small rRNA gene intervening sequence (IVS), amplified fragment length polymorphism analysis and DNA–DNA hybridization. The results of this study divided the H. bilis strains into two distinct and divergent genomic groups. In the absence of a specific phenotype or pathotype to distinguish these groups, however, they may be referred to as two genomospecies: H. bilis sensu stricto and Helicobacter sp. FL56. The phylogenetic network of gyrB and ureB gene sequences, as well as the comparative analysis of small rRNA gene IVS, suggests independent evolution of the two genomospecies. In particular, Helicobacter sp. FL56 seems to be the result of adaptation of an ancestral H. bilis strain in a new host. The phenomenon of adaptation to different hosts, or different intestinal niches in the same host, associated with high mutation and recombination rates could explain the evolution and the complex taxonomy of the genus Helicobacter. A comprehensive phylogenomics study of this genus would be useful to properly investigate this hypothesis.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/98532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact